某學校隨機抽取部分新生調(diào)查其上學路上所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學路上所需時間的范圍是,樣本數(shù)據(jù)分組為,,

(1)求直方圖中的值;
(2)如果上學路上所需時間不少于40分鐘的學生可申請在學校住宿,請估計學校1000名新生中有多少名學生可以申請住宿.

(1);(2)250;

解析試題分析:(1)根據(jù)頻率分布直方圖的小矩形的面積和為1,求得x值;
(2)利用頻率分布直方圖先求上學所需時間不少于40的學生的頻率,再利用頻率乘以總體個數(shù)可得1000名新生中有多少名學生可以申請住宿
1)由 
 
(2)上學所需時間不少于40的學生的頻率為:
 
估計學校1000名新生中有: 
考點:用樣本的頻率分布估計總體分布;頻率分布直方圖.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

某小學四年級男同學有45名,女同學有30名,老師按照分層抽樣的方法組建了一個5人的課外興趣小組.
(Ⅰ)求某同學被抽到的概率及課外興趣小組中男、女同學的人數(shù);
(Ⅱ)經(jīng)過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是先從小組里選出1名同學做實驗,該同學做完后,再從小組內(nèi)剩下的同學中選一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

隨著工業(yè)化以及城市車輛的增加,城市的空氣污染越來越嚴重,空氣質(zhì)量指數(shù)API一直居高不下,對人體的呼吸系統(tǒng)造成了嚴重的影響.現(xiàn)調(diào)查了某市500名居民的工作場所和呼吸系統(tǒng)健康,得到列聯(lián)表如下:

 
室外工作
室內(nèi)工作
合計
有呼吸系統(tǒng)疾病
150
 
 
無呼吸系統(tǒng)疾病
 
100
 
合計
200
 
 
 
(1)補全列聯(lián)表;
(2)你是否有95%的把握認為感染呼吸系統(tǒng)疾病與工作場所有關(guān);

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某人擺一個攤位賣小商品,一周內(nèi)出攤天數(shù)x與盈利y(百元),之間的一組數(shù)據(jù)關(guān)系見表:


2
3
4
5
6

2.2
3.8
5.5
6.5
7.0
 
已知,
(1)在下面坐標系中畫出散點圖;

(2)計算,并求出線性回歸方程;
(3)在第(2)問條件下,估計該攤主每周7天要是天天出攤,盈利為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得如下圖頻率分布直方圖:

(I)求這500件產(chǎn)品質(zhì)量指標值的樣本平均值和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(II)由直方圖可以認為,這種產(chǎn)品的質(zhì)量指標服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.
(i)利用該正態(tài)分布,求
(ii)某用戶從該企業(yè)購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標值位于區(qū)間的產(chǎn)品件數(shù).利用(i)的結(jié)果,求.
附:
,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某車間加工零件的數(shù)量與加工時間的統(tǒng)計數(shù)據(jù)如表:

零件數(shù)(個)
10
20
30
加工時間(分鐘)
21
30
39
現(xiàn)已求得上表數(shù)據(jù)的回歸方程中的值為0.9,則據(jù)此回歸模型可以預測,加工100個零件所需要的加工時間約為(   )
A.112分鐘       B.102分鐘       C.94分鐘       D.84分鐘

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲乙兩個班級均為40人,進行一門考試后,按學生考試成績及格與不及格進行統(tǒng)計,甲班及格人數(shù)為36人,乙班及格人數(shù)為24人.
(1)根據(jù)以上數(shù)據(jù)建立一個的列聯(lián)表;(2)試判斷成績與班級是否有關(guān)? 
參考公式:;

P(K2>k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
  k
0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某高校在2011年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組
[95,100]得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,求第3,4,5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定在這6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有一名學生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

空氣質(zhì)量指數(shù)PM2.5(單位:μg/m3)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,解代表空氣污染越嚴重:

PM2.5日均濃度
0~35
35~75
75~115
115~150
150~250
>250
空氣質(zhì)量級別
一級
二級
三級
四級
五級
六級
空氣質(zhì)量類別
優(yōu)

輕度污染
中度污染
重度污染
嚴重污染
 

某市2013年3月8日—4月7日(30天)對空氣質(zhì)量指數(shù)PM2.5進行檢測,獲得數(shù)據(jù)后整理得到如下條形圖:
(1)估計該城市一個月內(nèi)空氣質(zhì)量類別為良的概率;
(2)從空氣質(zhì)量級別為三級和四級的數(shù)據(jù)中任取2個,求至少有一天空氣質(zhì)量類別為中度污染的概率.

查看答案和解析>>

同步練習冊答案