計算sin44°cos14°-cos44°cos76°的結(jié)果等于( 。
A、
1
2
B、
3
3
C、
2
2
D、
3
2
考點:三角函數(shù)中的恒等變換應用
專題:計算題,三角函數(shù)的求值
分析:運用誘導公式和兩角差的正弦公式,結(jié)合特殊角的函數(shù)值,即可得到.
解答: 解:sin44°cos14°-cos44°cos76°
=sin44°cos14°-cos44°sin14°
=sin(44°-14°)
=sin30°=
1
2

故選A.
點評:本題考查三角函數(shù)的求值,考查誘導公式和兩角差的正弦公式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知不等式組
x2-4x+3<0
x2-6x+8<0
的解集是關于x的不等式2x2+ax-9<0解集的一個子集,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A={x|x2+px+q=0},B={x|x2-5x+6=0},
1)若A=B,求p,q的值;
2)若集合A是集合B的非空真子集,求p,q的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一元二次方程x2-4x+m=0沒有實數(shù)根,則m的取值范圍為( 。
A、m<2B、m>4
C、m>16D、m<8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上周期為2的偶函數(shù),已知x∈[2,3]時,f(x)=x2-2x.
(1)求x∈[-1,1]時f(x)的解析式;
(2)若f(x)=mx在區(qū)間[2k-1,2k+1](k∈N*)上有兩解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)在x=2處的導數(shù)為f′(2)=2,則
lim
△x→0
f(2+2△x)-f(2)
△x
=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin585°的值為( 。
A、
3
2
B、-
3
2
C、
2
2
D、-
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是等軸雙曲線x2-y2=a2(a>0)右支上一點,F(xiàn)1,F(xiàn)2是其左,右焦點,若∠PF2F1=90°,PF1=6,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=cos(x-
π
3
)的圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),再向左平移
π
6
個單位,所得圖象的一條對稱軸方程為(  )
A、x=
π
9
B、x=
π
8
C、x=
π
2
D、x=π

查看答案和解析>>

同步練習冊答案