已知數(shù)列{an}的前n項(xiàng)和,則an=   
【答案】分析:分情況討論:①當(dāng)n=1時(shí),a1=S1;②當(dāng)n≥2時(shí),an=Sn-Sn-1,綜合①②即可得到答案.
解答:解:①當(dāng)n=1時(shí),a1=S1=3-3×21=-3;
②當(dāng)n≥2時(shí),an=Sn-Sn-1=(3-3×2n)-(3-3×2n-1)=-3×2n-1
綜合①②,得(n∈N*).
故答案為:-3×2n-1(n∈N*).
點(diǎn)評(píng):本題考查由數(shù)列前n項(xiàng)和公式求數(shù)列通項(xiàng)公式問(wèn)題,屬基礎(chǔ)題,當(dāng)n≥2時(shí),an=Sn-Sn-1,注意不含首項(xiàng),應(yīng)檢驗(yàn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿(mǎn)足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案