直線y=
1
3
x與拋物線y=x-x2所圍圖形的面積等于
 
考點(diǎn):定積分在求面積中的應(yīng)用
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:本題考查的知識點(diǎn)是定積分的幾何意義,首先我們要聯(lián)立兩個曲線的方程,判斷他們的交點(diǎn),以確定積分公式中x的取值范圍,再根據(jù)定積分的幾何意義,所求圖形的面積為S=
2
3
0
(x-x2-
1
3
x
)dx,計(jì)算后即得答案.
解答: 解:由方程組
y=
1
3
x
y=x-x2
,解得,x1=0,x2=
2
3

故所求圖形的面積為S=
2
3
0
(x-x2-
1
3
x
)dx=
2
3
0
2
3
x-x2)dx=(
1
3
x2-
1
3
x3
|
2
3
0
=
4
81

故答案為:
4
81
點(diǎn)評:在直角坐標(biāo)系下平面圖形的面積的四個步驟:1.作圖象;2.求交點(diǎn);3.用定積分表示所求的面積;4.微積分基本定理求定積分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,幾何體EF-ABCD中,CDEF為邊長為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(1)求異面直線DF和BE所成角的大;
(2)求幾何體EF-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,且
1
a
+
1
b
≤a,
1
a
+
1
b
≤b,則
1
a
+
1
b
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖均為邊長為2的正方形,則該幾何體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的所有值之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
4
x-1
(x>1),當(dāng)x=a,f(x)取得最小值為b,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
2
x
-m在(0,3]上有且僅有一個零點(diǎn),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若任意兩圓交于不同兩點(diǎn)A(x1,y1)、B(x2,y2),且滿足
x1-x2
y1-y2
+
y1+y2
x1+x2
=0,則稱兩圓為“O→心圓“,已知圓C1:x2+y2-4x+2y-a2+5=0與圓C2:x2+y2-(2b-10)x-2by+2b2-10b+16=0(a,b∈R)為“O→心圓“,則實(shí)數(shù)b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個算法的程序框圖,則輸出的結(jié)果為( 。
A、
3
2
B、
2
3
C、
3
4
D、
1
4

查看答案和解析>>

同步練習(xí)冊答案