如圖,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M為AA1的中點,P是BC上一點,且由P沿棱柱側(cè)面經(jīng)過棱CC1到M的最短路線長為,設(shè)這條最短路線與CC1的交點為N,求:
(I)該三棱柱的側(cè)面展開圖的對角線長
(II)PC和NC的長
(III)平面NMP與平面ABC所成二面角(銳角)的大。ㄓ梅慈呛瘮(shù)表示)

【答案】分析:(I)由展開圖為矩形,用勾股定理求對角線長.
(II)在側(cè)面展開圖中三角形MAP是直角三角形,可以求出線段AP的長度,進(jìn)而可以求出PC的長度,再由相似比可以求得CN的長度.
(III)補(bǔ)形,找出兩面的交線,在特殊的位置作出線面角,如圖2.二面角易求.
解答:解:(I)正三棱柱ABC-A1B1C1的側(cè)面展開圖是一個長為9,寬為4的矩形,其對角線長為
(II)如圖1,將側(cè)面BB1C1C繞棱CC1旋轉(zhuǎn)120°使其與側(cè)成AA1C1C在同一平面上,點P運動到點P1的位置,連接MP1,則MP1就是由點P沿棱柱側(cè)面經(jīng)過棱CC1到點M的最短路線

設(shè)PC=x,則P1C=x,在Rt△MAP1中,由勾股定理得(3+x)2+22=29
求得x=2
∴PC=P1C=2


(III)如圖2,連接PP1,則PP1就是平面NMP與平面ABC的交線,作NH⊥PP1于H,又CC1⊥平面ABC,連接CH,由三垂線定理得,CH⊥PP1

∴∠NHC就是平面NMP與平面ABC所成二面角的平面角(銳角)
在Rt△PHC中,∵,∴
在Rt△NCH中,
故平面NMP與平面ABC所成二面角(銳角)的大小為arctan
點評:本小題主要考查直線與平面的位置關(guān)系、棱柱等基本知識,考查空間想象能力、邏輯思維能力和運算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,AB=1,若二面角C-AB-C1的大小為60°,則點C到平面C1AB的距離為(  )
A、
3
4
B、
1
2
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD與平面AA1CC1所成的角為a,則sina=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,D、E、G分別是AB、BB1、AC1的中點,AB=BB1=2.
(Ⅰ)在棱B1C1上是否存在點F使GF∥DE?如果存在,試確定它的位置;如果不存在,請說明理由;
(Ⅱ)求截面DEG與底面ABC所成銳二面角的正切值;
(Ⅲ)求B1到截面DEG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,AA1=4,AB=2,M是AC的中點,點N在AA1上,AN=
14

(Ⅰ)求BC1與側(cè)面ACC1A1所成角的大小;
(Ⅱ)求二面角C1-BM-C的正切值;
(Ⅲ)證明MN⊥BC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)如圖,在正三棱柱ABC一DEF中,AB=2,AD=1,P是CF的延長線上一點,過A、B、P三點的平面交FD于M,交EF于N.
(I)求證:MN∥平面CDE:
(II)當(dāng)平面PAB⊥平面CDE時,求三梭臺MNF-ABC的體積.

查看答案和解析>>

同步練習(xí)冊答案