數(shù)列{an} 的各項均為正數(shù),a1=t,k∈N*,k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)當k=1,p=5時,若數(shù)列{an}是成等比數(shù)列,求t的值;
(2)當t=1,k=1時,設Tn=a1+++…++,參照高二教材書上推導等比數(shù)列前n項求和公式的推導方法,求證:數(shù)列是一個常數(shù);
(3)設數(shù)列{an}是一個等比數(shù)列,求t(用p,k的代數(shù)式表示).
【答案】分析:(1)由,,得到等比數(shù)列(an}的公比q=5,由此能求出t的值.
(2)+…++,+…+,由此能夠證明=a1-6=-5.
(3),數(shù)列{an}是一個等比數(shù)列,所以求出公比為p,由此能求出t.
解答:解:(1),
,…(2分)
設等比數(shù)列(an}的公比是q,
•5,
∴q=5,…(4分)
n=1時,t+5t=30,∴t=5.…(5分)
(2)證明:+…++,
+…+,…(7分)
∴(1+)Tn=2a1+++…++=,…(9分)
=a1-6=-5.…(10分)
(3),
,…(11分)
數(shù)列{an}是一個等比數(shù)列,所以求出公比為p,…(13分)
∴t(pn-1+pn+…+pn+k-1)=6pn,…(15分)
當p=1時,t(k+1)=6,∴t=,…(16分)
當p≠1,且p>0時,t=6pn,
∴t=.…(17分)
點評:本題考查數(shù)列的綜合運用,綜合性強,難度大,對數(shù)學思維的要求較高,有一定的探索性,是高考的重點.解題時要認真審題,仔細解答,注意挖掘題設中的隱含條件,合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意n∈N*,總有an,Sn,an2成等差數(shù)列,則a2009=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閔行區(qū)一模)設數(shù)列{an}的各項均為正數(shù),前n項和為Sn,已知4Sn=
a
2
n
+2an+1(n∈N*)

(1)證明數(shù)列{an}是等差數(shù)列,并求其通項公式;
(2)證明:對任意m、k、p∈N*,m+p=2k,都有
1
Sm
+
1
Sp
2
Sk

(3)對于(2)中的命題,對一般的各項均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請證明你的結論,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是公差d大于零的等差數(shù)列,對某個確定的正整數(shù)k,有a12+ak+12≤M(M是常數(shù)).
(1)若數(shù)列{an}的各項均為正整數(shù),a1=2,當k=3時,M=100,寫出所有這樣數(shù)列的前4項;
(2)當k=5,M=100時,對給定的首項,若由已知條件該數(shù)列被唯一確定,求數(shù)列{an}的通項公式;
(3)記Sk=a1+a2+…+ak,對于確定的常數(shù)d,當Sk取到最大值時,求數(shù)列{an}的首項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•寶山區(qū)二模)已知{an}是公差d大于零的等差數(shù)列,對某個確定的正整數(shù)k,有a12+ak+12≤M(M是常數(shù)).
(1)若數(shù)列{an}的各項均為正整數(shù),a1=2,當k=3時,M=100,寫出所有這樣數(shù)列的前4項;
(2)若數(shù)列{an}的各項均為整數(shù),對給定的常數(shù)d,當數(shù)列由已知條件被唯一確定時,證明a1≤0;
(3)求S=ak+1+ak+2+…+a2k+1的最大值及此時數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知數(shù)列{an}的通項公式為an=2n(n∈N*),把數(shù)列{an}的各項排列成如圖所示的三角形數(shù)陣:記M(s,t)表示該數(shù)陣中第s行的第t個數(shù),則數(shù)陣中的偶數(shù)2010對應于( 。

查看答案和解析>>

同步練習冊答案