設(shè)y=[a2x+2(ab)x-b2x+1](a,b∈(0,+∞)),求使y為負(fù)值的x的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)教材全解高中數(shù)學(xué)人教A版必修1 人教A版 題型:013
設(shè)集合A={(x,y)|2x+y=1,x,y∈R},集合B={(x,y)|a2x+2y=a,x,y∈R},若A∩B=φ,則a的值為
A.2
B.4
C.2或-2
D.-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(陜西卷)、數(shù)學(xué)(文科) 題型:044
設(shè)函數(shù)f(x)=x3+ax2-a2x+1,g(x)=ax2-2x+1,其中實(shí)數(shù)a≠0.
(Ⅰ)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)函數(shù)y=f(x)與y=g(x)的圖象只有一個(gè)公共點(diǎn)且g(x)存在最小值時(shí),記g(x)的最小值為h(a),求h(a)的值域;
(Ⅲ)若f(x)與g(x)在區(qū)間(a,a+2)內(nèi)均為增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(4) 題型:044
設(shè)函數(shù)f(x)=-x3+ax2+a2x+1(x∈R),其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a≠0時(shí),求函數(shù)f(x)的極大值和極小值;
(Ⅲ)當(dāng)a=2時(shí),是否存在函數(shù)y=f(x)圖像上兩點(diǎn)以及函數(shù)y=(x)圖像上兩點(diǎn),使得以這四點(diǎn)為頂點(diǎn)的四邊形ABCD滿足如下條件:
①四邊形ABCD是平行四邊形;
②AB⊥x軸;
③|AB|=4.若存在,指出四邊形ABCD的個(gè)數(shù);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東省實(shí)驗(yàn)中學(xué)2012屆高三下學(xué)期綜合測(cè)試(一)數(shù)學(xué)文科試題 題型:044
設(shè)函數(shù)f(x)=-x3+ax2+a2x+1(x∈R),其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)f(x)的極大值和極小值;
(Ⅲ)當(dāng)a=2時(shí),是否存在函數(shù)y=f(x)圖像上兩點(diǎn)以及函數(shù)y=(x)圖像上兩點(diǎn),使得以這四點(diǎn)為頂點(diǎn)的四邊形ABCD同時(shí)滿足如下三個(gè)條件:①四邊形ABCD是平行四邊形:②AB⊥x軸;③|AB|=4.
若存在,指出四邊形ABCD的個(gè)數(shù);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com