已知f(x)=ln
1+x
1-x
,若f(a)=b,則f(-a)等于( 。
A、
1
b
B、-
1
b
C、b
D、-b
分析:利用f(a)+f(-a)=0,即可得出.
解答:解:∵f(a)+f(-a)=ln
1+a
1-a
+ln
1-a
1+a
=ln(
1+a
1-a
1-a
1+a
)
=ln1=0,f(a)=b,
∴f(-a)=-b.
故選:D.
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性、對(duì)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ln
1+x1-x

(1)求f(x)的定義域
(2)判斷f(x)的奇偶性并證明
(3)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ln
1+x
1-x
,(-1<x<1)

(1)判斷f(x)的奇偶性;
(2)解關(guān)于x的方程f(x)=ln
1
x
;
(3)解關(guān)于x的不等式f(x)+ln(1-x)>1+lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)=ln
1+x
1-x

(1)求f(x)的定義域
(2)判斷f(x)的奇偶性并證明
(3)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)=ln
1+x
1-x
,(-1<x<1)

(1)判斷f(x)的奇偶性;
(2)解關(guān)于x的方程f(x)=ln
1
x
;
(3)解關(guān)于x的不等式f(x)+ln(1-x)>1+lnx.

查看答案和解析>>

同步練習(xí)冊(cè)答案