設過曲線xy=1上兩點P1(1,1),P2(2,)的切線分別是l1、l2,那么l1與l2夾角的正切值為( )
A.-
B.
C.
D.
【答案】分析:利用導數(shù)求出曲線xy=1上兩點P1(1,1),P2(2,)的切線的斜率,然后求出那么l1與l2夾角的正切值.
解答:解:曲線xy=1,就是y=,所以y′=-x-2,所以P1(1,1),P2(2,)的切線的斜率分別是:-1;-;
所以tanθ==
故選D
點評:本題是基礎題,考查兩條直線的夾角的求法,導數(shù)求曲線切點的斜率的方法,考查計算能力,?碱}型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設過曲線xy=1上兩點P1(1,1),P2(2,
1
2
)的切線分別是l1、l2,那么l1與l2夾角的正切值為( 。
A、-
3
5
B、
3
4
C、
4
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設過曲線xy=1上兩點P1(1,1),P2(2,數(shù)學公式)的切線分別是l1、l2,那么l1與l2夾角的正切值為


  1. A.
    -數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設過曲線xy=1上兩點P1(1,1),P2(2,
1
2
)的切線分別是l1、l2,那么l1與l2夾角的正切值為( 。
A.-
3
5
B.
3
4
C.
4
5
D.
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過曲線xy=1上任意一點處的切線,與兩坐標軸構成的直角三角形的面積是(    )

A、1                                            B、2                    

C、3                                            D、4

查看答案和解析>>

同步練習冊答案