函數(shù)
在
上的最大值為
.
試題分析:因為
,所以
,很容易得到
>0在
時恒成立,所以函數(shù)
在
上是單調遞增的,所以
時,
取最大值,最大值為
。
點評:在做選擇或填空時,我們可以把求最值的過程進行簡化,既不用判斷使
=0成立的點是極大值點還是極小值點,直接將極值點和端點處的函數(shù)值進行比較,就可判斷出最大值和最小值。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
在閉區(qū)間
內的平均變化率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知函數(shù)
(Ⅰ)若函數(shù)
在
上為增函數(shù),求正實數(shù)
的取值范圍;
(Ⅱ)設
,求證:
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分15分)
已知函數(shù)
.
(Ⅰ)當
時,試判斷
的單調性并給予證明;
(Ⅱ)若
有兩個極值點
.
(i) 求實數(shù)a的取值范圍;
(ii)證明:
。 (注:
是自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知函數(shù)
(其中e為自然對數(shù))
(1)求F(x)="h" (x)
的極值。
(2)設
(常數(shù)a>0),當x>1時,求函數(shù)G(x)的單調區(qū)間,并在極值存在處求極值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
使關于x的不等式a
x≥x≥log
ax(a>0且a≠1)在區(qū)間
上恒成立的實數(shù)a的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
,則
的值為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
曲線y=x(3lnx+1)在點
處的切線方程為________________.
查看答案和解析>>