已知A={x||x-2|>1},B={x|y=
x-1
+
3-x
}
,那么( 。
A、A∩B=φB、A⊆B
C、B⊆AD、A=B
分析:解絕對值不等式|x-2|>1,我們要以求出集合A,求函數(shù)y=
x-1
+
3-x
的定義域,我們可以求出集合B,然后逐一分析四個答案,即可得到結論.
解答:解:A={x||x-2|>1}=(-∞,1)∪(3,+∞)
B={x|y=
x-1
+
3-x
}
=[1,3]
則A∩B=φ
故選A
點評:本題考查的知識點是集合的交集、并集運算及集合的包含關系及其判斷,其中根據(jù)已知求出集合A,B是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A={x|x<3},B={x|-1<x<5},則A∪B等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={x|
x-5
2
<-1},若?AB={x|x+4<-x},則集合B=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={x|x<1},B={x|-1<x<2},則A∪B=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學公式,設g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學公式上的值域為數(shù)學公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案