17.已知向量$\overrightarrow{a}$=(x-1,2),$\overrightarrow$=(2,x-1)滿足$\overrightarrow{a}•\overrightarrow$=-|$\overrightarrow{a}$|•|$\overrightarrow$|,則x=-1.

分析 由$\overrightarrow{a}•\overrightarrow=-|\overrightarrow{a}|•|\overrightarrow|$便可得出$\overrightarrow{a},\overrightarrow$的方向相反,即有$\overrightarrow{a}∥\overrightarrow$,這樣根據(jù)平行向量的坐標關(guān)系即可求出x值,并滿足$\overrightarrow{a},\overrightarrow$方向相反,從而確定x的值.

解答 解:$\overrightarrow{a}•\overrightarrow=-|\overrightarrow{a}||\overrightarrow|$;
∴$cos<\overrightarrow{a},\overrightarrow>=-1$;
∴$\overrightarrow{a},\overrightarrow$夾角為π;
∴$\overrightarrow{a}∥\overrightarrow$,且$\overrightarrow{a},\overrightarrow$方向相反;
∴(x-1)2-4=0;
∴x-1=-2,或x-1=2(舍去);
∴x=-1.
故答案為:-1.

點評 考查向量數(shù)量積的計算公式,已知余弦值求角,向量夾角的概念,以及平行向量的坐標關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$=(2,0),$\frac{\overrightarrow{BA}}{|\overrightarrow{BA}|}$+$\frac{\overrightarrow{BC}}{|\overrightarrow{BC}|}$=$\frac{\overrightarrow{BD}}{|\overrightarrow{BD}|}$,則四邊形ABCD的面積是(  )
A.$2\sqrt{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知x,y的一組數(shù)據(jù)如表所示:
x13678
y12345
(1)從x,y中各取一個數(shù),求x+y≥10的概率:
(2)對于表中數(shù)據(jù),甲、乙兩同學(xué)給出的擬合直線分別為$y=\frac{1}{3}x+1$與$y=\frac{1}{2}x+\frac{1}{2}$,試判斷哪條直線擬合程度更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列結(jié)論:①數(shù)列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$…,的一個通項公式是an=$\sqrt{3n-1}$; ②已知數(shù)列{an},a1=3,a2=6,且an+2=an+1-an,則數(shù)列的第五項為-6; ③在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=450,則a2+a8=180; ④在等差數(shù)列{an}中,a2=1,a4=5,則{an}的前5項和S5=15,其中正確的個數(shù)是( 。
A.2B.3C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$x={5^{{{log}_2}3.4}}$,$y={5^{{{log}_4}3.6}}$,$z={(\frac{1}{5})^{{{log}_3}0.3}}$,則x,y,z大小關(guān)系為(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如果執(zhí)行如圖的程序框圖,那么輸出的值是$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知tanα=-2
(1)求$\frac{3}{2}$sin2α-2cos2α+3的值;
(2)求$\frac{sin(4π-α)cos(3π+α)cos(\frac{π}{2}+α)cos(\frac{5}{2}π-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{13}{2}π+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(均為整數(shù))分成六個分數(shù)段[40,50),[50,60),…,[90,100],畫出如圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題:
(1)求a并估計這次考試中該學(xué)科的中位數(shù)、平均值;
(2)現(xiàn)根據(jù)本次考試分數(shù)分成下列六段(從低分段到高分段依次為第一組、第二組…第六組)為提高本班數(shù)學(xué)整體成績,決定組與組之間進行幫扶學(xué)習(xí).若選出的兩組分數(shù)之差不小于30分(以分數(shù)段為依據(jù),不以具體學(xué)生分數(shù)為依據(jù),如:[40,50),[70,80)這兩組分數(shù)之差為30分),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.30B.31.5C.33D.35.5

查看答案和解析>>

同步練習(xí)冊答案