(2006•黃浦區(qū)二模)已知拋物線pa:y=x2+ax+a-2(a為實常數(shù)).
(1)求所有拋物線pa的公共點坐標;
(2)當實數(shù)a取遍一切實數(shù)時,求拋物線pa的焦點方程.
【理】(3)是否存在一條以y軸為對稱軸,且過點(-1,-1)的開口向下的拋物線,使它與某個pa只有一個公共點?若存在,求出所有這樣的a;若不存在,說明理由.
【文】(3)是否存在直線y=kx+b(k,b為實常數(shù)),使它與所有的拋物線pa都有公共點?若存在,求出所有這樣的直線;若不存在,說明理由.
分析:(1)當a取不同實數(shù)時,y=x2+ax+a-2,y=x2+bx+b-2,整理可得(a-b)x=b-a,從而可求
(2)由y=x2+ax+a-2可得,y=(x+
a
2
)
2
-(
a2
4
+2-a)
,從而可得拋物線的焦點為:(
a
2
,
9+a2-4a
4

(3)例如可設拋物線方程為x2=-2py(p>0)
由拋物線過點(-1,-1)可得p=
1
2
,此時拋物線方程為x2=-y,聯(lián)立方程
x2=-y
y=x2+ax+a-2
整理可得2x2+ax+(a-2)=0課檢驗
(4)由于Pa:y=x2+ax+a-2恒過定點(-1,-1),則只要直線y=kx+b過定點(-1,-1)即可
解答:解:(1)當a取不同實數(shù)時,y=x2+ax+a-2,y=x2+bx+b-2
可得x2+ax+a-2=x2+bx+b-2
∴(a-b)x=b-a,x=-1代入可得,y=-1
當a取不同實數(shù)時,所有拋物線pa的公共點坐標(-1,-1)
(2)由y=x2+ax+a-2可得,y=(x+
a
2
)
2
-(
a2
4
+2-a)

∴拋物線的焦點為:(
a
2
,
9+a2-4a
4

(3)在滿足條件的拋物線例如可設拋物線方程為x2=-2py(p>0)
由拋物線過點(-1,-1)可得p=
1
2
,此時拋物線方程為x2=-y
聯(lián)立方程
x2=-y
y=x2+ax+a-2
整理可得2x2+ax+(a-2)=0
若a=4時,此時△=a2-8a+16=(a-4)2=0
即x2=-y與P4:y=x2+4x+2只有一個公共點
(4)由于Pa:y=x2+ax+a-2恒過定點(-1,-1)
則只要直線y=kx+b過定點(-1,-1)即可
此時b=k-1,y=kx+k-1即y+1=k(x+1)滿足條件
故存在這樣的直線
點評:本題主要考查了由拋物線的方程求解拋物線的性質及直線與拋物線的位置關系的考查,直線方程的應用,屬于綜合性試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2006•黃浦區(qū)二模)已知兩線段a=2,b=2
2
,若以a,b為邊作三角形,則a邊所對的角A的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•黃浦區(qū)二模)已知函數(shù)f(x)=log2|ax-1|(a≠0)滿足f(-2+x)=f(-2-x),則實數(shù)a的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•黃浦區(qū)二模)計算:
2
+i5
1-
2
i
=
i
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•黃浦區(qū)二模)已知:tanα=2,則tan(2α+
π
2
)
的值是
3
4
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•黃浦區(qū)二模)若3x=0.618,且a∈[k,k+1)(k∈Z),則k的值是
-1
-1

查看答案和解析>>

同步練習冊答案