已知函數(shù)f(x)=lnx,g(x)=2x-2(x≥1).
(Ⅰ)試判斷F(x)=(x2+1)f(x)-g(x)在定義域上的單調(diào)性;
(Ⅱ)當(dāng)0<a<b時(shí),求證:f(b)-f(a)>
2a(b-a)a2+b2
分析:(I)根據(jù)已知求出F(x)的解析式及其導(dǎo)函數(shù)的解析式,分析導(dǎo)函數(shù)的符號(hào),進(jìn)而可判斷出函數(shù)的單調(diào)性;
(II)結(jié)合(I)中函數(shù)的單調(diào)性,可得,(x2+1)lnx-(2x-2)>0,即lnx>
2x-2
x2+1
,當(dāng)0<a<b時(shí),令x=
b
a
,代入可得結(jié)論.
解答:解:(I)∵函數(shù)f(x)=lnx,g(x)=2x-2(x≥1).
F(x)=(x2+1)f(x)-g(x)=(x2+1)lnx-(2x-2)的定義域?yàn)閇1,+∞)
∴F′(x)=2xlnx+
x2+1
x
-2=2xlnx+
(x-1)2
x

當(dāng)x≥1時(shí),F(xiàn)′(x)≥0恒成立
故函數(shù)F(x)=(x2+1)lnx-(2x-2)在定義域[1,+∞)上為增函數(shù)
(II)由(1)知,當(dāng)x>1時(shí),F(xiàn)(x)>F(1)=0
即當(dāng)x>1時(shí),(x2+1)lnx-(2x-2)>0
lnx>
2x-2
x2+1
…①
令x=
b
a
,當(dāng)0<a<b時(shí),
b
a
>1
由①可得ln
b
a
=lnb-lna>
b
a
-2
(
b
a
)
2
+1
=
2a(b-a)
a2+b2

∴當(dāng)0<a<b時(shí),f(b)-f(a)>
2a(b-a)
a2+b2
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,及函數(shù)單調(diào)性的應(yīng)用,其中(I)的關(guān)鍵是熟練掌握導(dǎo)數(shù)法求函數(shù)單調(diào)性的步驟,(II)的關(guān)鍵是得到lnx>
2x-2
x2+1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案