若f(x)是定義在(-1,1)上的奇函數(shù),且在(-1,1)上是增函數(shù),則不等式f(1-x)+f(1-2x)<0的解集為________.


分析:利用函數(shù)為奇函數(shù),f(1-x)+f(1-2x)<0等價于f(1-x)<f(-1+2x),根據(jù)f(x)在(-1,1)上是增函數(shù),可得不等式組,由此即可求得結(jié)論.
解答:∵f(x)是奇函數(shù),∴-f(x)=f(-x)
∴f(1-x)+f(1-2x)<0等價于f(1-x)<f(-1+2x)
∵f(x)在(-1,1)上是增函數(shù),


∴不等式f(1-x)+f(1-2x)<0的解集為(
故答案為().
點評:本題考查函數(shù)奇偶性與單調(diào)性的結(jié)合,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)y=f(x)是定義在區(qū)間(a,b)(b>a)上的函數(shù),若對?x1、x2∈(a,b),都有|f(x1)-f(x2)|≤|x1-x2|,則稱y=f(x)是區(qū)間(a,b)上的平緩函數(shù).
(1)試證明對?k∈R3,f(x)=x2+kx+14都不是區(qū)間(-1,1)5上的平緩函數(shù);
(2)若f(x)是定義在實數(shù)集R上的、周期為T=2的平緩函數(shù),試證明對?x1、x2∈R,|f(x1)-f(x2)|≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

14、下列命題中:
①若函數(shù)f(x)的定義域為R,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若f(x)是定義域為R的奇函數(shù),對于任意的x∈R都有f(x)+f(2-x)=0,則函數(shù)f(x)的圖象關(guān)于直線x=1對稱;
③已知x1,x2是函數(shù)f(x)定義域內(nèi)的兩個值,且x1<x2,若f(x1)>f(x2),則f(x)是減函數(shù);
④若f (x)是定義在R上的奇函數(shù),且f (x+2)也為奇函數(shù),則f (x)是以4為周期的周期函數(shù).
其中正確的命題序號是
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)是定義在(0,+∞)上的增函數(shù),且對一切x,y>0,滿足f(
x
y
)=f(x)-f(y).
(Ⅰ)求f(1)的值;
(Ⅱ)若f(6)=1,解不等式f(x+3)-f(
1
3
)<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下列命題四個命題:
①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0)上是增函數(shù),θ∈(
π
4
,
π
2
)
,則f(sinθ)>f(cosθ);
②在△ABC中,A>B是cosA<cosB的充要條件;
③設(shè)函數(shù)f(x)=x2+2(-2≤x<0),其反函數(shù)為f-1(x),則f-1(3)=-1或1.
④在△ABC中,角A、B、C所對的邊分別為a、b、c,已知b2+c2=a2+bc,則A=
π
3

其中真命題的個數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)是定義在[0,+∞)上的增函數(shù),則不等式f(2x-1)<f(
13
)
的解集為
 

查看答案和解析>>

同步練習冊答案