20.函數(shù)y=$\sqrt{x+1}+\frac{1}{x+1}$的定義域?yàn)椋?1,+∞).

分析 直接由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不為0聯(lián)立不等式組求解.

解答 解:由$\left\{\begin{array}{l}{x+1≥0}\\{x+1≠0}\end{array}\right.$,解得x>-1.
∴函數(shù)y=$\sqrt{x+1}+\frac{1}{x+1}$的定義域?yàn)椋?1,+∞).
故答案為:(-1,+∞).

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.集合A={x|x<3},B={x|x2-5x<0},則A∩B是(  )
A.{x|0<x<3}B.{x|0<x<5}C.{x|3<x<5}D.{x|x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x,y,z均為非負(fù)數(shù)且x+y+z=2,則$\frac{1}{3}$x3+y2+z的最小值為$\frac{13}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=lnx-$\frac{2}{x}$的零點(diǎn)所在的大致區(qū)間是( 。
A.(1,2)B.($\frac{1}{e}$,1)C.(2,3)D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知直線l經(jīng)過雙曲線$\frac{{x}^{2}}{4}-{y}^{2}=1$的一個(gè)焦點(diǎn)且與其一條漸近線平行,則直線l的方程可以是(  )
A.y=-$\frac{1}{2}x+\frac{\sqrt{5}}{2}$B.y=$\frac{1}{2}x-\sqrt{5}$C.y=2x-$\frac{\sqrt{3}}{2}$D.y=-2x+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將函數(shù)y=3sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{π}{4}$個(gè)單位后,所在圖象對(duì)應(yīng)的函數(shù)解析式為y=3sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.將函數(shù)y=5sin(2x+$\frac{π}{4}$)的圖象向左平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后,所得函數(shù)圖象關(guān)于y軸對(duì)稱,則φ=$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,$\frac{sinA+sinB}{c}$=$\frac{\sqrt{2}sinB-sinC}{b-a}$.
(1)求角A的大;
(2)若△ABC為銳角三角形,求$\frac{c}$的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知θ為第二象限角,且$tan(θ-\frac{π}{4})=3$,則sinθ+cosθ=$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案