圓C的圓心在y軸上,且與兩直線l1;l2均相切.
(I)求圓C的方程;
(II)過拋物線上一點(diǎn)M,作圓C的一條切線ME,切點(diǎn)為E,且的最小值為4,求此拋物線準(zhǔn)線的方程.

(1)(2)

解析試題分析:解(I):由題意,可求得圓C的圓心坐標(biāo)為C(0,5),半徑,所以圓C的方程是 。
(II)如圖,過拋物線上M點(diǎn)的圓的切線為ME,E為切點(diǎn),C為圓心,

,由圓的切線性質(zhì)知,在Rt中,,所以,而設(shè)M(x,y),因?yàn)辄c(diǎn)M在拋物線上,所以,當(dāng)時(shí),,由此解得(不合題意,舍去),,故拋物線方程為,即,故所求拋物線的準(zhǔn)線方程為:
考點(diǎn):圓的方程,拋物線的方程
點(diǎn)評:解決的關(guān)鍵是利用直線與圓的位置關(guān)系,依據(jù)拋物線的定義來得到結(jié)論,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系中,已知圓經(jīng)過點(diǎn),圓心為直線與極軸的交點(diǎn),求圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線與橢圓交于兩點(diǎn),已知
,,若且橢圓的離心率,又橢圓經(jīng)過點(diǎn)
為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點(diǎn)為半焦距),求直線的斜率的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線的焦點(diǎn)在拋物線上,點(diǎn)是拋物線上的動(dòng)點(diǎn).

(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過點(diǎn)作拋物線的兩條切線,分別為兩個(gè)切點(diǎn),設(shè)點(diǎn)到直線的距離為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,短軸的一個(gè)端點(diǎn)與左右焦點(diǎn)、組成一個(gè)正三角形,焦點(diǎn)到橢圓上的點(diǎn)的最短距離為.
(1)求橢圓的方程;
(2)過點(diǎn)作直線與橢圓交于、兩點(diǎn),線段的中點(diǎn)為,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為

(1)求橢圓方程;
(2)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),分別是橢圓E:+=1(0﹤b﹤1)的左、右焦點(diǎn),過的直線與E相交于A、B兩點(diǎn),且,,成等差數(shù)列。
(Ⅰ)求;
(Ⅱ)若直線的斜率為1,求b的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),且它的離心率.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交橢圓于兩點(diǎn),若橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的右焦點(diǎn),且,設(shè)短軸的一個(gè)端點(diǎn)為,原點(diǎn)到直線的距離為,過原點(diǎn)和軸不重合的直線與橢圓相交于兩點(diǎn),且.
(1)求橢圓的方程;
(2)是否存在過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),且使得成立?若存在,試求出直線的方程;若不存在,請說明理由

查看答案和解析>>

同步練習(xí)冊答案