已知滿足條件x2+y2≤1的點(x,y)構(gòu)成的平面區(qū)域面積為S1,滿足條件[x]2+[y]2≤1的點(x,y)構(gòu)成的平面區(qū)域的面積為S2,其中[x]、[y]分別表示不大于x,y的最大整數(shù),例如:[-0.4]=-1,[1.6]=1,則S1與S2的關(guān)系是( )
A.S1<S2
B.S1=S2
C.S1>S2
D.S1+S2=π+3
【答案】分析:先把滿足條件x2+y2≤1的點(x,y)構(gòu)成的平面區(qū)域,滿足條件[x]2+[y]2≤1的點(x,y)構(gòu)成的平面區(qū)域表達出來,然后看二者的區(qū)域的面積,再求S1與S2的關(guān)系.
解答:解:滿足條件x2+y2≤1的點(x,y)構(gòu)成的平面區(qū)域為一個圓,其面積為π;
∵當0≤x<1,0≤y<1時,滿足條件[x]2+[y]2≤1;當0≤x<1,1≤y<2時,滿足條件[x]2+[y]2≤1;
當0≤x<1,-1≤y<0時,滿足條件[x]2+[y]2≤1;當-1≤x<0,0≤y<1時,滿足條件[x]2+[y]2≤1;
當1≤x<2,0≤y<1時,滿足條件[x]2+[y]2≤1
∴滿足條件[x]2+[y]2≤1的點(x,y)構(gòu)成的平面區(qū)域是5個邊長為1的正方形,其面積為5.
綜上得:S1與S2的關(guān)系是S1<S2,
故選A.
點評:本題類似線性規(guī)劃,處理兩個不等式的形式中,第二個難度較大,[x]2+[y]2≤1的平面區(qū)域不易理解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、已知滿足條件x2+y2≤1的點(x,y)構(gòu)成的平面區(qū)域面積為S1,滿足條件[x]2+[y]2≤1的點(x,y)構(gòu)成的平面區(qū)域的面積為S2,其中[x]、[y]分別表示不大于x,y的最大整數(shù),例如:[-0.4]=-1,[1.6]=1,則S1與S2的關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•朝陽區(qū)二模)已知滿足條件x2+y2≤1的點(x,y)構(gòu)成的平面區(qū)域的面積為S1,滿足條件[x]2+[y]2≤1的點(x,y)構(gòu)成的平面區(qū)域的面積為S2,(其中[x]、[y]分別表示不大于x、y的最大整數(shù)),則點(S1,S2)一定在(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省紹興一中高三(下)回頭考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知滿足條件x2+y2≤1的點(x,y)構(gòu)成的平面區(qū)域面積為S1,滿足條件[x]2+[y]2≤1的點(x,y)構(gòu)成的平面區(qū)域的面積為S2,其中[x]、[y]分別表示不大于x,y的最大整數(shù),例如:[-0.4]=-1,[1.6]=1,則S1與S2的關(guān)系是( )
A.S1<S2
B.S1=S2
C.S1>S2
D.S1+S2=π+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年北京市朝陽區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

已知滿足條件x2+y2≤1的點(x,y)構(gòu)成的平面區(qū)域的面積為S1,滿足條件[x]2+[y]2≤1的點(x,y)構(gòu)成的平面區(qū)域的面積為S2,(其中[x]、[y]分別表示不大于x、y的最大整數(shù)),則點(S1,S2)一定在( )
A.直線y=x左上方的區(qū)域內(nèi)
B.直線y=x上
C.直線y=x右下方的區(qū)域內(nèi)
D.直線x+y=7左下方的區(qū)域內(nèi)

查看答案和解析>>

同步練習(xí)冊答案