用秦九韶算法計算多項式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4時的值時,V3的值為( )
A.-845
B.220
C.-57
D.34
【答案】分析:首先把一個n次多項式f(x)寫成(…((a[n]x+a[n-1])x+a[n-2])x+…+a[1])x+a[0]的形式,然后化簡,求n次多項式f(x)的值就轉(zhuǎn)化為求n個一次多項式的值,求出V3的值.
解答:解:∵f(x)=12+35x-8x2+79x3+6x4+5x5+3x6
=((3x+5)x+6)x+79)x-8)x+35)x+12,
∴v=a6=3,
v1=vx+a5=3×(-4)+5=-7,
v2=v1x+a4=-7×(-4)+6=34,
v3=v2x+a3=34×(-4)+79=-57,
∴V3的值為-57;
故選C.
點評:本題考查通過程序框圖解決實際問題,把實際問題通過數(shù)學上的算法,寫成程序,然后求解,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

用秦九韶算法計算當x=2時,多項函數(shù)f(x)=3x3+7x2-9x+5的值為_______________.

查看答案和解析>>

同步練習冊答案