設(shè)α,β為兩個(gè)不重合的平面,m、n、l是不重合的直線,給出下列命題,其中正確的序號(hào)是   
①若m⊥n,m⊥α,則n∥α;
②若n?α,m?β,α,β相交不垂直,則n與m不垂直;
③若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;
④m是平面α的斜線,n是m在平面α內(nèi)的射影,若l⊥n,則l⊥m.
【答案】分析:若m⊥n,m⊥α,則n∥α或n?α;若n?α,m?β,α,β相交不垂直,則n與m相交、平行或異面,有可能垂直;若α⊥β,α∩β=m,n?α,m⊥n,則由平面垂直的性質(zhì)知n⊥β;m是平面α的斜線,n是m在平面α內(nèi)的射影,若l⊥n,且l?α,則l⊥m.
解答:解:①若m⊥n,m⊥α,則n∥α或n?α,故①不正確;
②若n?α,m?β,α,β相交不垂直,
則n與m相交、平行或異面,有可能垂直,故②不正確;
③若α⊥β,α∩β=m,n?α,m⊥n,
則由平面垂直的性質(zhì)知n⊥β,故③正確;
④m是平面α的斜線,n是m在平面α內(nèi)的射影,
若l⊥n,且l?α,則l⊥m,故④不正確.
故答案為:③.
點(diǎn)評(píng):本題考查平面的基本性質(zhì)和推論,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高一下學(xué)期期末考試數(shù)學(xué)卷 題型:填空題

設(shè)a,b為兩個(gè)不重合的平面,lm,n為兩兩不重合的直線,給出下列四個(gè)命題:

①若ablÌa,則lb

②若mÌa,nÌamb,nb,則ab; 

③若lalb,則ab;

④若m、n是異面直線,ma,na,且lm,ln,則la.

其中真命題的序號(hào)是____★____

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:南京模擬 題型:單選題

設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若ab,l⊥a,則l⊥b;②若m⊥a,n⊥a,mb,nb,則ab;③若la,l⊥b,則a⊥b;④若m、n是異面直線,ma,na,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( 。
A.①③④B.①②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都市石室中學(xué)高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( )
A.①③④
B.①②③
C.①③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年江蘇省南京市高三3月調(diào)研數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( )
A.①③④
B.①②③
C.①③
D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案