分析 求出雙曲線(xiàn)的漸近線(xiàn)方程,討論直線(xiàn)l的斜率不存在和存在,設(shè)出直線(xiàn)方程,代入漸近線(xiàn)的方程,求得A,B的坐標(biāo),可得中點(diǎn)坐標(biāo),代入雙曲線(xiàn)的方程,運(yùn)用直角三角形的面積公式計(jì)算即可得到.
解答 解:雙曲線(xiàn)C:x2-y2=2即為$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}$=1,
可得a=b=$\sqrt{2}$,漸近線(xiàn)方程為y=±x,
若直線(xiàn)l的斜率不存在,可設(shè)x=t,
即有A(t,t),B(t,-t),中點(diǎn)為(t,0),
代入雙曲線(xiàn)的方程可得t=±$\sqrt{2}$,
直角三角形AOB的面積為$\frac{1}{2}•\sqrt{2}•2\sqrt{2}$=2;
若直線(xiàn)l的斜率存在,設(shè)直線(xiàn)l的方程為y=kx+m,
代入漸近線(xiàn)方程,可得A($\frac{m}{1-k}$,$\frac{m}{1-k}$),B(-$\frac{m}{1+k}$,$\frac{m}{1+k}$),
求得AB的中點(diǎn)為($\frac{km}{1-{k}^{2}}$,$\frac{m}{1-{k}^{2}}$),
代入雙曲線(xiàn)的方程可得m2=2(1-k2),①
由題意可得A,B在y軸的同側(cè),可得$\frac{{m}^{2}}{{k}^{2}-1}$>0,
①顯然不成立.
綜上可得,△AOB的面積為2.
故答案為2.
點(diǎn)評(píng) 本題考查了雙曲線(xiàn)的標(biāo)準(zhǔn)方程及其性質(zhì),主要考查漸近線(xiàn)方程的運(yùn)用,同時(shí)考查中點(diǎn)坐標(biāo)公式和三角形的面積計(jì)算公式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-1)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-1,0)∪(0,1) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com