過(guò)雙曲線(xiàn)數(shù)學(xué)公式-數(shù)學(xué)公式=1(a>0,b>0)的右頂點(diǎn)A作斜率為-1的直線(xiàn),該直線(xiàn)與雙曲線(xiàn)的兩條漸近線(xiàn)的交點(diǎn)分別為B、C.若數(shù)學(xué)公式=數(shù)學(xué)公式數(shù)學(xué)公式,則雙曲線(xiàn)的離心率是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:分別表示出直線(xiàn)l和兩個(gè)漸進(jìn)線(xiàn)的交點(diǎn),進(jìn)而表示出,進(jìn)而根據(jù)=求得a和b的關(guān)系,進(jìn)而根據(jù)c2-a2=b2,求得a和c的關(guān)系,則離心率可得.
解答:直線(xiàn)l:y=-x+a與漸近線(xiàn)l1:bx-ay=0交于B(),
l與漸近線(xiàn)l2:bx+ay=0交于C(,),A(a,0),
=(-,),=(,-),∵=,
=,b=2a,
∴c2-a2=4a2,
∴e2==5,∴e=,
故選C.
點(diǎn)評(píng):本題主要考查了直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題.要求學(xué)生有較高地轉(zhuǎn)化數(shù)學(xué)思想的運(yùn)用能力,能將已知條件轉(zhuǎn)化到基本知識(shí)的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省溫州市八校聯(lián)考高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

過(guò)雙曲線(xiàn)-=1(a>0,b>0)的一個(gè)焦點(diǎn)F引它到漸進(jìn)線(xiàn)的垂線(xiàn),垂足為M,延長(zhǎng)FM交y軸于E,若=2,則該雙曲線(xiàn)離心率為( )
A.
B.
C.
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省濰坊市三縣高三12月聯(lián)考理科數(shù)學(xué)試卷 題型:選擇題

過(guò)雙曲線(xiàn)=1(a>0,b>0)的左焦點(diǎn)F(-c,0)(c>0),作圓的切線(xiàn),切點(diǎn)為E,延長(zhǎng)FE交雙曲線(xiàn)右支于點(diǎn)P,若,則雙曲線(xiàn)的離心率為(   )

A.        B.            C.            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省深圳市高級(jí)中學(xué)等三校高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

拋物線(xiàn)頂點(diǎn)在原點(diǎn),它的準(zhǔn)線(xiàn)過(guò)雙曲線(xiàn)-=1(a>0,b>0)的一個(gè)焦點(diǎn),并與雙曲線(xiàn)實(shí)軸垂直,已知拋物線(xiàn)與雙曲線(xiàn)的一個(gè)交點(diǎn)為(,),求拋物線(xiàn)與雙曲線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省德州市躍華學(xué)校高三(上)12月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

過(guò)雙曲線(xiàn)-=1(a>0,b>0)的右頂點(diǎn)A作斜率為-1的直線(xiàn),該直線(xiàn)與雙曲線(xiàn)的兩條漸近線(xiàn)的交點(diǎn)分別為B、C.若=,則雙曲線(xiàn)的離心率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)單元檢測(cè):圓錐曲線(xiàn)(2)(解析版) 題型:解答題

直線(xiàn)x=t過(guò)雙曲線(xiàn)-=1(a>0,b>0)的右焦點(diǎn)且與雙曲線(xiàn)的兩條漸近線(xiàn)分別交于A(yíng),B兩點(diǎn),若原點(diǎn)在以AB為直徑的圓外,則雙曲線(xiàn)離心率的取值范圍是    

查看答案和解析>>

同步練習(xí)冊(cè)答案