如圖,橢圓(a>b>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=.
(Ⅰ)求橢圓方程;
(Ⅱ)設F、F分別為橢圓的左、右焦點,M為線段AF的中點,求證:∠ATM=∠AFT.
科目:高中數(shù)學 來源: 題型:
(22) (本小題滿分14分)
如圖,橢圓(a>b>0)的一個焦點為F(1,0),且過點(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點N,直線AF與BN交于點M.
(ⅰ)求證:點M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,橢圓(a>b>0)的一個焦點為F(1,0),且過點(2,0).(Ⅰ)求橢圓C的方程;(Ⅱ)若AB為垂直于x軸的動弦,直線與軸交于點N,直線AF與BN交于點.求證:點M恒在橢圓C上.
查看答案和解析>>
科目:高中數(shù)學 來源:2008年普通高等學校招生全國統(tǒng)一考試數(shù)學文史類(福建卷) 題型:解答題
(本小題滿分14分)
如圖,橢圓(a>b>0)的一個焦點為F(1,0),且過點(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點N,直線AF與BN交于點M.
(ⅰ)求證:點M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(Ⅰ)求橢圓的離心率;
(Ⅱ)若橢圓的長軸長等于4,Q是橢圓右準線l上異于點A的任意一點,A1、A2分別是橢圓的左、右頂點,直線QA1、QA2與橢圓的另一個交點分別為M、N,求證:直線MN與x軸交于定點.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市寧海中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com