如圖,橢圓(a>b>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=.

(Ⅰ)求橢圓方程;

(Ⅱ)設(shè)F、F分別為橢圓的左、右焦點,M為線段AF的中點,求證:∠ATM=∠AFT.

解:(Ⅰ)過點A、B的直線方程為.

因為由題意得有惟一解,

有惟一解,

所以(ab≠0),

故 

    又因為,即,

所以。

    從而得

故所求的橢圓方程為 。

  (Ⅱ)由(Ⅰ)得,

                故

                從而M

                     由解得

                所以T(1,).

                因為,

                又 ,得

                    

                            =

                 因此

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

 (22) (本小題滿分14分)

如圖,橢圓ab>0)的一個焦點為F(1,0),且過點(2,0).

(Ⅰ)求橢圓C的方程;

(Ⅱ)若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點N,直線AFBN交于點M.

 (ⅰ)求證:點M恒在橢圓C上;

(ⅱ)求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓ab>0)的一個焦點為F(1,0),且過點(2,0).(Ⅰ)求橢圓C的方程;(Ⅱ)若AB為垂直于x軸的動弦,直線軸交于點N,直線AFBN交于點.求證:點M恒在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)文史類(福建卷) 題型:解答題

(本小題滿分14分)
如圖,橢圓ab>0)的一個焦點為F(1,0),且過點(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點N,直線AFBN交于點M.
(ⅰ)求證:點M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓=1(a>b>c)的右準(zhǔn)線l與x軸的交點為A,橢圓的上頂點為B,過橢圓的右焦點F作垂直于橢圓長軸的直線交橢圓于P點.若點D滿足 (λ≠0).

(Ⅰ)求橢圓的離心率;

(Ⅱ)若橢圓的長軸長等于4,Q是橢圓右準(zhǔn)線l上異于點A的任意一點,A1、A2分別是橢圓的左、右頂點,直線QA1、QA2與橢圓的另一個交點分別為M、N,求證:直線MN與x軸交于定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京市寧海中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,橢圓(a>b>0)過點,其左、右焦點分別為F1,F(xiàn)2,離心率,M,N是橢圓右準(zhǔn)線上的兩個動點,且
(1)求橢圓的方程;
(2)求MN的最小值;
(3)以MN為直徑的圓C是否過定點?請證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案