設(shè)f(x)=ax2bxc,當(dāng)|x|≤1時(shí),總有|f(x)|≤1,求證:|f(2)|≤7.

證明:∵|x|≤1時(shí),有|f(x)|≤1,

∴|f(0)|=|c|≤1,|f(1)|≤1,|f(-1)|≤1.

又∵f(1)=a+b+c,f(-1)=ab+c,∴|f(2)|=|4a+2bc|=|3(a+b+c)+(ab+c)-3c|=|3f(1)+

f(-1)-3f(0)|≤|3f(1)|+|f(-1)|+|3f(0)|≤3+1+3=7.

∴|f(2)|≤7.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:志鴻系列訓(xùn)練必修一數(shù)學(xué)北師版 題型:013

設(shè)f(x)=ax2+bx+c(a≠0),若f(α)·f(β)<0(αβ),則f(x)=0在(αβ)內(nèi)的實(shí)根的個(gè)數(shù)為

[  ]

A.0

B.1

C.2

D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高中數(shù)學(xué)全解題庫(kù)(國(guó)標(biāo)蘇教版·必修4、必修5) 蘇教版 題型:044

設(shè)f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)必修五數(shù)學(xué)蘇教版 蘇教版 題型:044

設(shè)f(x)=ax2bxc,若,問(wèn)是否存在a、b、cR,使得不等式x2f(x)≤2x2+2x對(duì)一切實(shí)數(shù)x都成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)f(x)=ax2+bx+c(a≠0),若f(α)·f(β)<0(α<β),則f(x)=0在(α,β)內(nèi)的實(shí)根的個(gè)數(shù)為


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案