已知曲線方程,若對任意實數(shù),直線,都不是曲線的切線,則實數(shù)的取值范圍是

 

【答案】

【解析】

試題分析:把已知直線變形后找出直線的斜率,要使已知直線不為曲線的切線,即曲線斜率不為已知直線的斜率,求出f(x)的導函數(shù),由完全平方式大于等于0即可推出a的取值范圍解:把直線方程化為y=-x-m,所以直線的斜率為-1,且m∈R,所以已知直線是所有斜率為-1的直線,即曲線的斜率不為-1,由得:f′(x)=x2-2ax,對于x∈R,有x2-2ax≥ ,根據(jù)題意得:-1<a<1.故答案為

考點:求曲線上過某點曲線方程

點評:此題考查學生會利用導數(shù)求曲線上過某點曲線方程的斜率,是一道基礎題.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數(shù)圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數(shù)k、b應滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源:惠州一模 題型:解答題

已知函數(shù)f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數(shù)圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數(shù)k、b應滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省泉州市南安市國光中學高二(下)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數(shù)圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數(shù)k、b應滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省常州一中高三(下)期初數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數(shù)圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數(shù)k、b應滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年安徽省合肥市高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數(shù)圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數(shù)k、b應滿足的條件.

查看答案和解析>>

同步練習冊答案