如圖,四棱錐中,底面是菱形,,,,,,的中點,上的點滿足

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.

(I)詳見解析;(Ⅱ) .

解析試題分析:(Ⅰ)是菱形,,這是由兩個正三角形構成的菱形,又的中點,.又.由此可得 平面.(Ⅱ)是由正三角形構成的菱形,又的中點,所以,所以.另外根據(jù)所給長度,用勾股定理可得,又,平面.又,所以點F到平面BEC的距離等于,這樣由棱錐的體積公式可得的體積.
試題解析:(Ⅰ)證明: ,的中點,
.                (2分)
,,,
是正三角形,          (3分)
.                (4分)
,
平面.         (5分)
(Ⅱ)由(Ⅰ)和題設知:在中,,
,
.                             (6分)
,,滿足,
.                                           (7分)
,
平面.                                    (8分)
,則,平面,
,.                     (10分)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱柱ABCA1B1C1中,側棱AA1⊥底面ABC,ABBC,DAC的中點,AA1AB=2,BC=3.

(1)求證:AB1∥平面BC1D;
(2)求四棱錐BAA1C1D的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示為一個幾何體的直觀圖、三視圖(其中正視圖為直角梯形,俯視圖為正方形,側視圖為直角三角形).

(1)求四棱錐P-ABCD的體積;
(2)若GBC上的動點,求證:AEPG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直三棱柱中, ,,求:

(1)異面直線所成角的大小;
(2)四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某工廠為了制造一個實心工件,先畫出了這個工件的三視圖(如圖),其中正視圖與側視圖為兩個全等的等腰三角形,俯視圖為一個圓,三視圖尺寸如圖所示(單位cm);

(1)求出這個工件的體積;
(2)工件做好后,要給表面噴漆,已知噴漆費用是每平方厘米1元,現(xiàn)要制作10個這樣的工件,請計算噴漆總費用(精確到整數(shù)部分).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在多面體ABCDEF中,底面ABCD是邊長為2的正方形,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分別是CE和CF的中點.

(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求證:平面BDGH//平面AEF;
(Ⅲ)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐的三視圖和直觀圖如下圖所示,其中正視圖、側視圖是直角三角形,俯視圖是有一條對角線的正方形.是側棱上的動點.

(1)求證:;
(2)若的中點,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直棱柱中,分別是的中點,.

⑴證明:;
⑵求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖是某三棱柱被削去一個底面后的直觀圖與側(左)視圖、俯視圖.已知CF=2AD,側(左)視圖是邊長為2的等邊三角形;俯視圖是直角梯形,有關數(shù)據(jù)如圖所示.求該幾何體的體積.

查看答案和解析>>

同步練習冊答案