下列求導運算正確的是(  )
A、(log2x)′=
1
xln2
B、(
1
x
)′=
1
x2
C、(cosx)′=sinx
D、(x2+4)′=2x+4
考點:導數(shù)的運算
專題:導數(shù)的概念及應用
分析:根據(jù)基本函數(shù)的導數(shù)公式和導數(shù)的運算法則分別求導,判斷即可
解答: 解:∵(log2x)′=
1
xln2
,(
1
x
)′=-
1
x2
,(cosx)′=-sinx,(x2+4)′=2x
∴選項A正確
故選:A
點評:本題考查了基本函數(shù)的導數(shù)公式和導數(shù)的運算法則,屬于基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

f(x)為奇函數(shù),x>0時,f(x)=sin2x+cos2x,則x<0時f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(3,-2,1),B(4,-5,3),則與向量
AB
平行的一個向量坐標為(  )
A、(
1
3
,1,1)
B、(-
1
3
,1,-1)
C、(
1
2
,-
3
2
,1)
D、(-
1
2
3
2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列定積分:
(1)
1
-2
(
1
2
x+1)dx
;                    (2)
0
-1
xdx
;
(3)
2
1
(1-x)dx;                     (4)
0
sinxdx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊是a,b,c,且a2=b2+c2-bc.
(Ⅰ)求角A的大;
(Ⅱ)若a=
3
,S為△ABC的面積,求
3
3
S+cosBcosC的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“p∨q是假命題”是“p或q為真命題”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
x
-log2
1+x
1-x

(1)求f(x)的定義域;
(2)判斷并證明f(x)的奇偶性;
(3)求證:f(x)在(0,1)內(nèi)是減函數(shù),并求使關系式f(x)<f(
1
2
)
成立的實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法正確的是( 。
A、命題“若a>b,則a2>b2”的否命題是“若a<b,則a2<b2
B、命題“若a>b,則a2>b2”的逆否命題是“若a≤b,則a2≤b2
C、命題“?∈R,cosx<1”的否命題是“?x0∈R,cosx0≥1”
D、命題“?∈R,cosx<1”的否命題是“?x0∈R,cosx0>1”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

角α的終邊經(jīng)過點P(x,4)且cosα=
x
5
,則sinα=
 

查看答案和解析>>

同步練習冊答案