如圖,AB為圓O的直徑,點(diǎn)E、F在圓上,已知AB∥EF,AB=BC=4,AE=EF=BF=2,AD=2.
直角梯形ABCD所在平面與圓O所在平面互相垂直.
(Ⅰ)求證:平面CBE⊥平面DAE;
(Ⅱ)求平面CDF與平面ABCD所成角的余弦值.
【答案】分析:(1)欲證平面CBE⊥平面DAE,根據(jù)面面垂直的判定定理可知在平面CBE內(nèi)一直線(xiàn)與平面DAE垂直,
欲證BE⊥平面DAE,根據(jù)直線(xiàn)與平面垂直的判定定理可知只需證BE與平面DAE內(nèi)兩相交直線(xiàn)垂直,
AD⊥BE,AE⊥BE,AE∩AD=A,滿(mǎn)足定理?xiàng)l件;
(2)連接OE,OF,以O(shè)為原點(diǎn),OB所在的直線(xiàn)為y軸,垂直于OB的直線(xiàn)分別為x軸、z軸建立坐標(biāo)系,
求出平面ABCD的一個(gè)法向量為以及平面CDF的一個(gè)法向量為,
求出兩法向量的余弦值即可得到平面CDF與平面ABCD所成角的余弦值.
解答:解:(1)連接BE,因?yàn)樗倪呅蜛BCD是直角梯形,
所以AD⊥AB,又平面ABCD⊥平面ABFE
所以AD⊥平面ABFE,所以AD⊥BE,
因?yàn)锳B為O的直徑,所以AE⊥BE,
又AE∩AD=A,所以BE⊥平面DAE,
又BE?平面CBE,所以平面CBE⊥平面DAE.
(2)如圖,因?yàn)锳E=EF=BF=2,連接OE,OF,
則△OEF是邊長(zhǎng)為2的等邊三角形,以O(shè)為原點(diǎn),
OB所在的直線(xiàn)為y軸,垂直于OB的直線(xiàn)分別為x軸、
z軸建立如如圖所示的坐標(biāo)系,則有
A(0,-2,0),B(0,2,0),C(0,2,4),
D(0,-2,2),F(xiàn)(,1,0),
易得平面ABCD的一個(gè)法向量為=(1,0,0),
設(shè)平面CDF的一個(gè)法向量為=(x,y,z),
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125213119389129/SYS201310251252131193891017_DA/5.png">=(0,-4,-2),=(,-1,-4),
則由可得,令y=1,
=(-,1,-2),
所以cos<,>=
結(jié)合圖形,易知平面CDF與平面ABCD所成角的余弦值為
點(diǎn)評(píng):本題主要考查了平面與平面垂直的判定,以及二面角的度量,空間向量是理科生需要掌握的,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濟(jì)南市高三12月質(zhì)量檢測(cè)數(shù)學(xué)文卷 題型:解答題

(本小題滿(mǎn)分12分)如圖,AB為圓O的直

徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD

所在的平面和圓O所在的平面垂直,且.

⑴求證:;

⑵設(shè)FC的中點(diǎn)為M,求證:;

⑶設(shè)平面CBF將幾何體分成的兩個(gè)錐體的體積分別為,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年遼寧省錦州市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:陜西省寶雞中學(xué)2010屆高三適應(yīng)性訓(xùn)練(數(shù)學(xué)理) 題型:填空題

 A.(參數(shù)方程與極坐標(biāo))

直線(xiàn)與直線(xiàn)的夾角大小為         

 

B.(不等式選講)要使關(guān)于x的不等式在實(shí)數(shù)

范圍內(nèi)有解,則A的取值范圍是                  

C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

徑AB =8,E為OB.的中點(diǎn),CD過(guò)點(diǎn)E且垂直于AB,

EF⊥AC,則

CF•CA=            

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案