(07年安徽卷)(本小題滿分14分)

   某國(guó)采用養(yǎng)老儲(chǔ)備金制度,公民在就業(yè)的第一年就交納養(yǎng)老儲(chǔ)備金,數(shù)目為a1,以后第年交納的數(shù)目均比上一年增加d(d>0),因此,歷年所交納的儲(chǔ)備金數(shù)目a1,a2,…是一個(gè)公差為d的等差數(shù)列,與此同時(shí),國(guó)家給予優(yōu)惠的計(jì)息政策,不僅采用固定利率,而且計(jì)算復(fù)利,這就是說(shuō),如果固定年利率為r(r>0),那么,在第n年末,第一年所交納的儲(chǔ)備金就變?yōu)?I>n(1+r)n-1,第二年所交納的儲(chǔ)備金就變?yōu)?I>a2(1+r)n-2,……,以Tn表示到第n年末所累計(jì)的儲(chǔ)備金總額.

 (Ⅰ)寫(xiě)出TnTn-1n≥2)的遞推關(guān)系式;

 (Ⅱ)求證:Tn=An+Bn,其中是一個(gè)等比數(shù)列,是一個(gè)等差數(shù)列.

本小題主要考查等差數(shù)列、等比數(shù)列的基本概念和基本方法,考查學(xué)生閱讀資料、提取信息、建立數(shù)學(xué)模型的能力、考查應(yīng)用所學(xué)知識(shí)分析和解決實(shí)際問(wèn)題的能力.本小題滿分14分.

解析:(Ⅰ)我們有

(Ⅱ),對(duì)反復(fù)使用上述關(guān)系式,得

  ,             ①

在①式兩端同乘,得

         ②

①,得

           

如果記,

其中是以為首項(xiàng),以為公比的等比數(shù)列;是以為首項(xiàng),為公差的等差數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年安徽卷理)(本小題滿分13分)在醫(yī)學(xué)生物學(xué)試驗(yàn)中,經(jīng)常以果蠅作為試驗(yàn)對(duì)象,一個(gè)關(guān)有6只果蠅的籠子里,不慎混入了兩只蒼蠅(此時(shí)籠內(nèi)共有8只蠅子:6只果蠅和2只蒼蠅),只好把籠子打開(kāi)一個(gè)小孔,讓蠅子一只一只地往外飛,直到兩只蒼蠅都飛出,再關(guān)閉小孔.以ξ表示籠內(nèi)還剩下的果蠅的只數(shù).

(Ⅰ)寫(xiě)出ξ的分布列(不要求寫(xiě)出計(jì)算過(guò)程);

(Ⅱ)求數(shù)學(xué)期望

(Ⅲ)求概率Pξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年安徽卷理)(本小題滿分14分)

設(shè)a≥0,f (x)=x-1-ln2 x+2a ln xx>0).

(Ⅰ)令Fx)=xf'x),討論Fx)在(0.+∞)內(nèi)的單調(diào)性并求極值;

(Ⅱ)求證:當(dāng)x>1時(shí),恒有x>ln2x-2a ln x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年安徽卷文)(本小題滿分14分)

設(shè)函數(shù)fx)=-cos2x-4tsincos+4t2+t2-3t+4,x∈R,

其中≤1,將f(x)的最小值記為g(t).

(Ⅰ)求g(t)的表達(dá)式;

(Ⅱ)詩(shī)論g(t)在區(qū)間(-1,1)內(nèi)的單調(diào)性并求極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年安徽卷)(本小題滿分14分)

如圖,在六面體中,四邊形ABCD是邊 

長(zhǎng)為2的正方形,四邊形是邊長(zhǎng)為1的正方

形,平面,平面ABCD

求證: (Ⅰ)共面,共面.

(Ⅱ)求證:平面

(Ⅲ)求二面角的大小(用反三角函數(shù)值表示).

                                                             

第(17)題圖

查看答案和解析>>

同步練習(xí)冊(cè)答案