(本小題10分)如圖,已知平行四邊形ABCD和矩形ACEF所在的平面互相垂直,,
(1)求證:AC⊥BF;
(2)求點(diǎn)A到平面FBD的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐的底面是正方形,底面,是上的任意一點(diǎn).
(1)求證:平面平面;
(2)當(dāng)時(shí),求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱中,△是邊長為的等邊三角形,平面,,分別是,的中點(diǎn).
(1)求證:∥平面;
(2)若為上的動(dòng)點(diǎn),當(dāng)與平面所成最大角的正切值為時(shí),求平面 與平面所成二面角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,頂點(diǎn)在底面內(nèi)的射影恰好落在的中點(diǎn)上,又,且
(1)求證:;
(2)若,求直線與所成角的余弦值;
(3)若平面與平面所成的角為,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA="AD=1,AB=2," ,.
(1)求證:平面平面;
(2)求三棱錐D-PAC的體積;
(3)求直線PC與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知幾何體E—ABCD如圖所示,其中四邊形ABCD為矩形,為等邊三角形,且點(diǎn)F為棱BE上的動(dòng)點(diǎn)。
(I)若DE//平面AFC,試確定點(diǎn)F的位置;
(II)在(I)條件下,求二面角E—DC—F的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖8,在直角梯形中,,,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面互相垂直,如圖9.
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com