精英家教網 > 高中數學 > 題目詳情
如圖過拋物線y2=2px(p>0)的焦點F的直線依次交拋物線及準線于點A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為( )

A.y2=
B.y2=9
C.y2=
D.y2=3
【答案】分析:分別過點A,B作準線的垂線,分別交準線于點E,D,設|BF|=a,根據拋物線定義可知|BD|=a,進而推斷出∠BCD的值,在直角三角形中求得a,進而根據BD∥FG,利用比例線段的性質可求得p,則拋物線方程可得.
解答:解:如圖分別過點A,B作準線的垂線,分別交準線于點E,D,設|BF|=a,則由已知得:|BC|=2a,由定義得:|BD|=a,故∠BCD=30°,
在直角三角形ACE中,∵|AE|=3,|AC|=3+3a,
∴2|AE|=|AC|
∴3+3a=6,
從而得a=1,
∵BD∥FG,
=求得p=
因此拋物線方程為y2=3x.
故選D.
點評:本題主要考查了拋物線的標準方程.考查了學生對拋物線的定義和基本知識的綜合把握.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖過拋物線y2=2px(p>0)的焦點F的直線依次交拋物線及準線于點A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為( 。
A、y2=
3
2
x
B、y2=9x
C、y2=
9
2
x
D、y2=3x

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,過拋物線y2=2px?(p>0)的焦點F的直線l交拋物線于兩點A、B,交其準線于C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為

A.y2=x             B.y2=9x                 C.y2=x               D.y2=3x

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于兩點A、B,交其準線于C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為

A.y2=x            B.y2=9x              C.y2=x              D.y2=3x

查看答案和解析>>

科目:高中數學 來源:2010-2011學年遼寧省營口市高二(上)期末數學試卷(文科)(解析版) 題型:選擇題

如圖過拋物線y2=2px(p>0)的焦點F的直線依次交拋物線及準線于點A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為( )

A.y2=
B.y2=9
C.y2=
D.y2=3

查看答案和解析>>

科目:高中數學 來源:2010年廣東省廣州市越秀區(qū)高考數學一輪雙基小題練習(09)(解析版) 題型:選擇題

如圖過拋物線y2=2px(p>0)的焦點F的直線依次交拋物線及準線于點A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為( )

A.y2=
B.y2=9
C.y2=
D.y2=3

查看答案和解析>>

同步練習冊答案