A.2 B.1 C.0 D.
解析:觀察數(shù)列{an}可得到:
1,1+1,1+1+2,1+1+2+3,1+1+2+3+4,1+1+2+3+4+5,…,因此,此數(shù)列的通項(xiàng)公式an=1+,則an=.
觀察到數(shù)列{bn}
bn=[+1++2+…++n]
=[ +1+2+3+…+n]
=[+]=,
∴==1.
答案:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013年普通高等學(xué)校招生全國(guó)統(tǒng)一考試北京卷文數(shù) 題型:044
給定數(shù)列a1,a2,……,an.對(duì)i=1,2,3,…,n-1,該數(shù)列前i項(xiàng)的最大值記為Ai,后n-i項(xiàng)ai+1,ai+2,……,an的最小值記為Bi,di=Ai-Bi.
(1)設(shè)數(shù)列{an}為3,4,7,1,寫(xiě)出d1,d2,d3的值.
(2)設(shè)a1,a2,……,an(n≥4)是公比大于1的等比數(shù)列,且a1>0,證明d1,d2,……,dn-1是等比數(shù)列.
(3)設(shè)d1,d2,……,dn-1是公差大于0的等差數(shù)列,且d1>0,證明a1,a2,……,an-1是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013年北京市高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com