如圖,斜率為k的直線l過橢圓=1(a>b>0)對稱軸上的定點D(λa,0)(λ為非零常數(shù),λ≠±1),且l交橢圓于A、B兩點.

(1)當(dāng)k=λ=,且線段AB中點的橫坐標(biāo)等于時,求橢圓的離心率;

(2)試探究:在x軸上是否存在定點M,使·恒為定值?

答案:
解析:

  解:

  設(shè)直線的方程為

  由,消去整理得,

  

  設(shè),,則

  ①,且

  (1)

  由中點坐標(biāo)公式及①式得,,解得(6分)

  (2)若存在定點符合題意,可設(shè)(為常數(shù)),且

  (為常數(shù)),則

  而,

  則

  即

  把①②兩式代入③式,整理得,

  

  (其中都為常數(shù))

  要使④式對變量恒成立,當(dāng)且僅當(dāng)

  

  解得,,故存在定點符合題意.

  其中,,.(13分)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知半橢圓
x2
a2
+
y2
b2
=1(x≥0)
與半橢圓
y2
b2
+
x2
c2
=1(x≤0)
組成的曲線稱為“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設(shè)點F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點,A1,A2和B1,B2是“果圓”與x,y軸的交點,
(1)若三角形F0F1F2是邊長為1的等邊三角形,求“果圓”的方程;
(2)若|A1A|>|B1B|,求
b
a
的取值范圍;
(3)一條直線與果圓交于兩點,兩點的連線段稱為果圓的弦.是否存在實數(shù)k,使得斜率為k的直線交果圓于兩點,得到的弦的中點的軌跡方程落在某個橢圓上?若存在,求出所有k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,O為坐標(biāo)原點,過點P(2,0)且斜率為k的直線l交拋物線y2=2x于M(x1,y1),N(x2,y2)兩點.
(1)寫出直線l的方程;
(2)求x1x2與y1y2的值;
(3)求證:OM⊥ON.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知雙曲線C1
y2
m
-
x2
n
=1(m>0,n>0),圓C2:(x-2)2+y2=2,雙曲線C1的兩條漸近線與圓C2相切,且雙曲線C1的一個頂點A與圓心C2關(guān)于直線y=x對稱,設(shè)斜率為k的直線l過點C2
(1)求雙曲線C1的方程;
(2)當(dāng)k=1時,在雙曲線C1的上支上求一點P,使其與直線l的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•杭州模擬)如圖,由半圓x2+y2=1(y≤0)和部分拋物線y=a(x2-1)(y≥0,a>0)合成的曲線C稱為“羽毛球形線”,且曲線C經(jīng)過點(2,3).
(1)求a的值;
(2)設(shè)A(1,0),B(-1,0),過A且斜率為k的直線l與“羽毛球形”相交于P,A,Q三點,問是否存在實數(shù)k使得∠QBA=∠PBA?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案