分析 (1)求出函數(shù)的導(dǎo)數(shù),求出m的值,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可;
(2)問題轉(zhuǎn)化為(a+1)lnx+$\frac{1}{x}$-ax+a-1>0在x∈(0,1)上恒成立,設(shè)h(x)=(a+1)lnx+$\frac{1}{x}$-ax+a-1,x∈(0,+∞),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 (1)證明:∵f(x)=(x+m)lnx,
∴f′(x)=lnx+$\frac{x+m}{x}$,
易知圓x2+y2=5在點(diǎn)(2,-1)處的切線方程是2x-y=5,
由題意得f′(e)=2,即lne+$\frac{e+m}{e}$=2,解得:m=0,
∴f(x)=xlnx,f′(x)=lnx+1,
令f′(x)=0,解得:x=$\frac{1}{e}$,
x∈(0,$\frac{1}{e}$)時(shí),f′(x)<0,
故f(x)在(0,$\frac{1}{e}$)遞減,
x∈($\frac{1}{e}$,+∞)時(shí),f′(x)>0,
故f(x)在($\frac{1}{e}$,+∞)遞增,
故f(x)在x=$\frac{1}{e}$處取極小值,也是最小值,最小值是f($\frac{1}{e}$)=-$\frac{1}{e}$,
又-$\frac{1}{e}$>-$\frac{1}{2}$,故f(x)>-$\frac{1}{2}$;
(2)解:若不等式(ax+1)(x-1)<(a+1)lnx在x∈(0,1)上恒成立,
則(a+1)lnx+$\frac{1}{x}$-ax+a-1>0在x∈(0,1)上恒成立,
設(shè)h(x)=(a+1)lnx+$\frac{1}{x}$-ax+a-1,x∈(0,+∞),
則h′(x)=$\frac{(1-x)(ax-1)}{{x}^{2}}$,
①a≤0時(shí),h′(x)<0在(0,1)恒成立,
故h(x)在(0,1)遞減,又h(1)=0,
故x∈(0,1)時(shí),總有h(x)>0,符合題意;
②a>1時(shí),令h′(x)=0,解得:x=$\frac{1}{a}$或x=1,
易知h(x)在(0,$\frac{1}{a}$)遞減,在($\frac{1}{a}$,1)遞增,又h(1)=0,
故x∈($\frac{1}{a}$,1)時(shí),總有h(x)<0,不符合題意;
③0<a≤1時(shí),h′(x)<0在(0,1)恒成立,
故h(x)在(0,1)遞減,又h(1)=0,
故x∈(0,1)時(shí),總有h(x)>0,符合題意;
綜上,a的范圍是(-∞,1].
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,考查不等式的證明,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $8+2\sqrt{5}$ | B. | $6+2\sqrt{5}$ | C. | $8+2\sqrt{3}$ | D. | $6+2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,+∞) | B. | (2,+∞) | C. | (-∞,2] | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2π}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $-\frac{3}{4π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | {(2,-1)} | C. | {(-1,2),(-2,1)} | D. | {(1,-2),(-1,2),(-2,1)} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com