【題目】如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,點E,F,G分別在棱SA,SB,SC上,且平面EFG∥平面ABC,點E為SA的中點.求證:
(Ⅰ)AF⊥平面SBC;
(Ⅱ)SA⊥BC.
【答案】(Ⅰ)見解析(Ⅱ)見解析
【解析】
(Ⅰ)由平面EFG∥平面ABC證得,即可說明點是的中點,即可證得AF⊥SB,利用平面SAB⊥平面SBC即可證得AF⊥平面SBC,問題得證。
(Ⅱ)由(Ⅰ)中結(jié)論可證得BC⊥AF,結(jié)合BA⊥BC即可證得BC⊥平面SAB,問題得證。
證明:(Ⅰ)平面EFG∥平面ABC,
平面EFG平面=,平面ABC平面=,
,又點是的中點
點是的中點,
又AS=AB,
AF⊥SB
∵在三棱錐S-ABC中,平面SAB⊥平面SBC,平面SAB∩平面SBC=SB,
∴AF⊥平面SBC.
(Ⅱ)∵AF⊥平面SBC,BC平面SBC,
∴BC⊥AF,
∵BA⊥BC.BA∩AF=A,
∴BC⊥平面SAB,
∵SA平面SAB,∴SA⊥BC.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等比數(shù)列{an}的公比為q,其前n項之積為Tn,并且滿足條件:a1>1,a2 016a2 017>1, .給出下列結(jié)論:(1)0<q<1;(2)a2 016a2 018-1>0;(3)T2 016是數(shù)列{Tn}中的最大項;(4)使Tn>1成立的最大正整數(shù)n為4 031.其中正確的結(jié)論為( )
A. (2)(3) B. (1)(3)
C. (1)(4) D. (2)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BE∥AF,BC∥AD,AF=AB=BC=2,AD=1.
(1)證明:在平面BCE上,一定存在過點C的直線l與直線DF平行;
(2)求二面角FCDA的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】意大利數(shù)學(xué)家列昂納多·斐波那契是第一個研究了印度和阿拉伯?dāng)?shù)學(xué)理論的歐洲人,斐波那契數(shù)列被譽為是最美的數(shù)列,斐波那契數(shù)列滿足:,,.若將數(shù)列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前項所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結(jié)論正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列敘述錯誤的是( )
A.已知直線和平面,若點,點且,,則
B.若三條直線兩兩相交,則三條直線確定一個平面
C.若直線不平行于平面,且,則內(nèi)的所有直線與都不相交
D.若直線和不平行,且,,,則l至少與,中的一條相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,C是圓O上一點,AC=BC,且PA⊥平面ABC,E是AC的中點,F是PB的中點,PA=,AB=2.求:
(Ⅰ)異面直線EF與BC所成的角;
(Ⅱ)點A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在一個實數(shù),使得成立,則稱為函數(shù)的一個不動點,設(shè)函數(shù)(, 為自然對數(shù)的底數(shù)),定義在上的連續(xù)函數(shù)滿足,且當(dāng)時, .若存在,且為函數(shù)的一個不動點,則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在上的最小值;
(2)若關(guān)于的不等式只有兩個整數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某市11月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)(AQI)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機選擇11月1日至11月12日中的某一天到達該市,并停留3天.
(1)求此人到達當(dāng)日空氣重度污染的概率;
(2)設(shè)X是此人停留期間空氣重度污染的天數(shù),求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com