(2012•浙江模擬)在平面四邊形ABCD中,△ABC為正三角形,△ADC為等腰直角三角形,AD=DC=2,將△ABC沿AC折起,使點(diǎn)B至點(diǎn)P,且PD=2
3
,M為PA的中點(diǎn),N在線(xiàn)段PD上.

(I)若PA⊥平面CMN,求證:AD∥平面CMN;
(II)求直線(xiàn)PD與平面ACD所成角的余弦值.
分析:(I)先證明PA⊥AD,利用PA⊥平面CMN,可得PA⊥MN,從而可得MN∥AD,利用線(xiàn)面平行的判定,可得AD∥平面CMN;
(II)取AC中點(diǎn)E,連接ED、PE,過(guò)P作PF⊥ED交ED于F,則可得∠PDE為直線(xiàn)PD與平面ACD所成的角,在△PDE中,利用余弦定理,可求直線(xiàn)PD與平面ACD所成角的余弦值.
解答:(I)證明:∵AD=2,PA=2
2
,PD=2
3

∴PA2+AD2=PD2,∴PA⊥AD
∵PA⊥平面CMN,∴PA⊥MN
∴MN∥AD
∵AD?平面CMN,MN?平面CMN,
∴AD∥平面CMN;
(II)解:取AC中點(diǎn)E,連接ED、PE,過(guò)P作PF⊥ED交ED于F

∵△APC為正三角形,∴AC⊥PE
∵AD=DC,∴AC⊥DE
∵PE∩DE=E,∴AC⊥平面PED
∵PF?平面PED
∴PF⊥AC,PF⊥BD,AC∩ED=E
∴PF⊥平面ACD
∴∠PDE為直線(xiàn)PD與平面ACD所成的角
在△PDE中,∵PE=
6
,ED=
2
,PD=2
3

∴cos∠PDE=
12+2-6
2×2
3
×
2
=
6
3

∴直線(xiàn)PD與平面ACD所成角的余弦值為
6
3
點(diǎn)評(píng):本題考查線(xiàn)面平行,考查線(xiàn)面角,掌握線(xiàn)面平行的判定,正確作出線(xiàn)面角是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浙江模擬)已知cos(x-
π
6
)=-
3
3
,則cosx+cos(x-
π
3
)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浙江模擬)已知函數(shù)f(x)=(x2-ax+1)•ex
(I)當(dāng)a=3時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(II)對(duì)任意b>0,f(x)在區(qū)間[b-lnb,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浙江模擬)在三次獨(dú)立重復(fù)試驗(yàn)中,事件A在每次試驗(yàn)中發(fā)生的概率相同,若事件A至少發(fā)生一次的概率為
63
64
,則事件A恰好發(fā)生一次的概率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浙江模擬)焦點(diǎn)在x軸上的橢圓
x2
4a
+
y2
a2+1
=1
的離心率的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浙江模擬)將長(zhǎng)方體截去一個(gè)四棱錐,得到的幾何體如圖所示,則該幾何體的側(cè)視圖為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案