若函數(shù)y=loga(x2-ax+1)有最小值,則a的取值范圍是( )
A.0<a<1
B.0<a<2,a≠1
C.1<a<2
D.a≥2
【答案】分析:先根據(jù)復合函數(shù)的單調性確定函數(shù)g(x)=x2-ax+1的單調性,進而分a>1和0<a<1兩種情況討論:①當a>1時,考慮地函數(shù)的圖象與性質得到x2-ax+1的函數(shù)值恒為正;②當0<a<1時,x2-ax+1沒有最大值,從而不能使得函數(shù)y=loga(x2-ax+1)有最小值.最后取這兩種情形的并集即可.
解答:解:令g(x)=x2-ax+1(a>0,且a≠1),
①當a>1時,g(x)在R上單調遞增,
∴△<0,
∴1<a<2;
②當0<a<1時,x2-ax+1沒有最大值,從而不能使得函數(shù)y=loga(x2-ax+1)有最小值,不符合題意.
綜上所述:1<a<2;
故選C.
點評:本題考查對數(shù)的性質,函數(shù)最值,考查學生發(fā)現(xiàn)問題解決問題的能力,是中檔題.