6.有共同底邊的等邊三角形ABC和BCD所在平面互相垂直,則異面直線AB和CD所成角的余弦值為$\frac{1}{4}$.

分析 設(shè)有共同底邊的等邊三角形ABC和BCD的邊長為2,取BC中點(diǎn)O,連結(jié)AO,BO,則OA,OB,OC兩兩垂直,以O(shè)為原點(diǎn),建立空間直角坐標(biāo)系O-xyz,利用向量法能求出異面直線AB和CD所成角的余弦值.

解答 解:設(shè)有共同底邊的等邊三角形ABC和BCD的邊長為2,
取BC中點(diǎn)O,連結(jié)AO,BO,則OA,OB,OC兩兩垂直,
以O(shè)為原點(diǎn),建立如圖所求的空間直角坐標(biāo)系O-xyz,
則B(0,-1,0)A(0,0,$\sqrt{3}$),C(0,1,0),
D($\sqrt{3},0,0$),
$\overrightarrow{AB}$=(0,-1,-$\sqrt{3}$),$\overrightarrow{CD}$=($\sqrt{3},-1,0$),
設(shè)異面直線AB和CD所成角為θ,
則cosθ=$\frac{|\overrightarrow{AB}•\overrightarrow{CD}|}{|\overrightarrow{AB}|•|\overrightarrow{CD}|}$=$\frac{1}{\sqrt{4}•\sqrt{4}}$=$\frac{1}{4}$.
∴異面直線AB和CD所成角的余弦值為$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點(diǎn)評 本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=x2-2tx-4t-4,g(x)=$\frac{1}{x}$-(t+2)2,兩個(gè)函數(shù)圖象的公切線恰為3條,則實(shí)數(shù)t的取值范圍為($\frac{3\root{3}{2}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a,b為正實(shí)數(shù),向量$\overrightarrow{m}$=(a,4),向量$\overrightarrow{n}$=(b,b-1),若$\overrightarrow{m}$∥$\overrightarrow{n}$,則a+b最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)f(x)=(a-2)x2+(a-1)x+3的圖象關(guān)于y軸對稱,則f(x)的增區(qū)間是(-∞,0]也可以填(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)$f(x)=sin(3x+\frac{π}{4})$的最小正周期是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,則輸出的a值為( 。
A.-3B.$\frac{1}{3}$C.-$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知△ABC的面積為S,且$\overrightarrow{BA}•\overrightarrow{CA}=S$.
(1)求tanA的值;
(2)若B=$\frac{π}{4},c=6$,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z=$\frac{3-4i}{2-i}$,$\overline z$是z的共軛復(fù)數(shù),則$|{\overrightarrow{\overline z}}$|為( 。
A.$\frac{{5\sqrt{5}}}{3}$B.$\sqrt{5}$C.$\frac{{\sqrt{5}}}{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$則z=4x+3y的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案