【題目】已知函數(shù)(為實(shí)數(shù)常數(shù))
(1)當(dāng)時(shí),求函數(shù)在上的單調(diào)區(qū)間;
(2)當(dāng)時(shí),成立,求證:.
【答案】(1) 單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(2)證明見解析
【解析】
(1)先求出函數(shù)的導(dǎo)函數(shù),再解不等式與,從而求出函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),由等價(jià)于恒成立,再分別討論:①當(dāng)時(shí),②當(dāng)時(shí),③當(dāng)時(shí),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及最值從而得解.
解:(1)因?yàn)?/span>,所以,
當(dāng)時(shí),由得,解得,
由得,解得,
所以函數(shù)在的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.
(2)當(dāng)時(shí),由得
即恒成立(*),
設(shè),則,由題可知
①當(dāng)時(shí),,所以在上單調(diào)遞增,
,可知且時(shí),,使得,可知(*)式不成立,則不符合條件;
②當(dāng)時(shí),,所以在上單調(diào)遞減,
,可知(*)式成立,則符合條件,所以成立;
③當(dāng)時(shí),由得,由得,
所以在上單調(diào)遞增,可知在上單調(diào)遞減,
所以,由(*)式得,
設(shè),則,所以在上單調(diào)遞減,
而,,可知.
綜上所述,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.先把高二年級(jí)的2000名學(xué)生編號(hào):1到2000,再?gòu)木幪?hào)為1到50的學(xué)生中隨機(jī)抽取1名學(xué)生,其編號(hào)為,然后抽取編號(hào)為,,,…的學(xué)生,這種抽樣方法是分層抽樣法
B.線性回歸直線不一定過樣本中心
C.若一個(gè)回歸直線方程為,則變量每增加一個(gè)單位時(shí),平均增加3個(gè)單位
D.若一組數(shù)據(jù)2,4,,8的平均數(shù)是5,則該組數(shù)據(jù)的方差也是5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形, 平面, , , , , 分別為, , 的中點(diǎn).
(1)求證: 平面;
(2)求平面與平面所成銳二面角的大;
(3)在線段上是否存在一點(diǎn),使直線與直線所成的角為?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,橢圓的四個(gè)頂點(diǎn)構(gòu)成的四邊形面積為.
(1)求橢圓的方程;
(2)若是橢圓上的一點(diǎn),過且斜率等于的直線與橢圓交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為.求面積的最大值及取最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年2月25日,第屆羅馬尼亞數(shù)學(xué)大師賽(簡(jiǎn)稱)于羅馬尼亞首都布加勒斯特閉幕,最終成績(jī)揭曉,以色列選手排名第一,而中國(guó)隊(duì)無(wú)一人獲得金牌,最好成績(jī)是獲得銀牌的第名,總成績(jī)排名第.而在分量極重的國(guó)際數(shù)學(xué)奧林匹克()比賽中,過去拿冠軍拿到手軟的中國(guó)隊(duì),也已經(jīng)有連續(xù)年沒有拿到冠軍了.人們不禁要問“中國(guó)奧數(shù)究竟怎么了?”,一時(shí)間關(guān)于各級(jí)教育主管部門是否應(yīng)該下達(dá)“禁奧令”成為社會(huì)熱點(diǎn).某重點(diǎn)高中培優(yōu)班共人,現(xiàn)就這人“禁奧令”的態(tài)度進(jìn)行問卷調(diào)查,得到如下的列聯(lián)表:
不應(yīng)下“禁奧令” | 應(yīng)下“禁奧令” | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
若采用分層抽樣的方法從人中抽出人進(jìn)行重點(diǎn)調(diào)查,知道其中認(rèn)為不應(yīng)下“禁奧令”的同學(xué)共有人.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為對(duì)下“禁奧令”的態(tài)度與性別有關(guān)?請(qǐng)說明你的理由;
(2)現(xiàn)從這人中抽出名男生、名女生,記此人中認(rèn)為不應(yīng)下“禁奧令”的人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)神舟十一號(hào)載人飛船在酒泉衛(wèi)星發(fā)射中心成功發(fā)射,引起全國(guó)轟動(dòng).開學(xué)后,某校高二年級(jí)班主任對(duì)該班進(jìn)行了一次調(diào)查,發(fā)現(xiàn)全班60名同學(xué)中,對(duì)此事關(guān)注的占,他們?cè)诒緦W(xué)期期末考試中的物理成績(jī)(滿分100分)如下面的頻率分布直方圖:
(1)求“對(duì)此事關(guān)注”的同學(xué)的物理期末平均分(以各區(qū)間的中點(diǎn)代表該區(qū)間的均值).
(2)若物理成績(jī)不低于80分的為優(yōu)秀,請(qǐng)以是否優(yōu)秀為分類變量,
①補(bǔ)充下面的列聯(lián)表:
物理成績(jī)優(yōu)秀 | 物理成績(jī)不優(yōu)秀 | 合計(jì) | |
對(duì)此事關(guān)注 | |||
對(duì)此事不關(guān)注 | |||
合計(jì) |
②是否有以上的把握認(rèn)為“對(duì)此事是否關(guān)注”與物理期末成績(jī)是否優(yōu)秀有關(guān)系?
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有兩個(gè)車間生產(chǎn)同一種產(chǎn)品,第一車間有工人200人,第二車間有工人400人,為比較兩個(gè)車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,并對(duì)他們中每位工人生產(chǎn)完成一件產(chǎn)品的時(shí)間(單位:min)分別進(jìn)行統(tǒng)計(jì),得到下列統(tǒng)計(jì)圖表(按照[55,65),[65,75),[75,85),[85,95]分組).
分組 | 頻數(shù) |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合計(jì) | 20 |
第一車間樣本頻數(shù)分布表
(Ⅰ)分別估計(jì)兩個(gè)車間工人中,生產(chǎn)一件產(chǎn)品時(shí)間小于75min的人數(shù);
(Ⅱ)分別估計(jì)兩車間工人生產(chǎn)時(shí)間的平均值,并推測(cè)哪個(gè)車間工人的生產(chǎn)效率更高?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
(Ⅲ)從第一車間被統(tǒng)計(jì)的生產(chǎn)時(shí)間小于75min的工人中,隨機(jī)抽取3人,記抽取的生產(chǎn)時(shí)間小于65min的工人人數(shù)為隨機(jī)變量X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一片產(chǎn)量很大的水果種植園,在臨近成熟時(shí)隨機(jī)摘下某品種水果100個(gè),其質(zhì)量(均在l至11kg)頻數(shù)分布表如下(單位: kg):
分組 |
|
|
|
|
|
頻數(shù) | 10 | 15 | 45 | 20 | 10 |
以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均值,將頻率視為概率.
(1)由種植經(jīng)驗(yàn)認(rèn)為,種植園內(nèi)的水果質(zhì)量近似服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.請(qǐng)估算該種植園內(nèi)水果質(zhì)量在內(nèi)的百分比;
(2)現(xiàn)在從質(zhì)量為 的三組水果中用分層抽樣方法抽取14個(gè)水果,再?gòu)倪@14個(gè)水果中隨機(jī)抽取3個(gè).若水果質(zhì)量的水果每銷售一個(gè)所獲得的的利潤(rùn)分別為2元,4元,6元,記隨機(jī)抽取的3個(gè)水果總利潤(rùn)為元,求的分布列及數(shù)學(xué)期望.
附: ,則.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com