設(shè)函數(shù)f(x)=lnx,g(x)=
1
2
x2

(Ⅰ)設(shè)函數(shù)F(x)=f(x)-
1
4
g(x)
,求F(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)函數(shù)G(x)=
(x-1)f(x)
g(x)
,當(dāng)x∈(1,t]時(shí),都有tG(x)-xG(t)≤G(x)-G(t)成立,求實(shí)數(shù)t的最大值.
(Ⅰ)函數(shù)F(x)=f(x)-
1
4
g(x)
=lnx-
1
8
x2
,定義域?yàn)椋?,+∞)
求導(dǎo)函數(shù)F′(x)=
4-x2
4x
,令F′(x)>0,結(jié)合x>0,可得0<x<2
∴F(x)的單調(diào)遞增區(qū)間為(0,2);
(Ⅱ)設(shè)函數(shù)G(x)=
(x-1)f(x)
g(x)
,則tG(x)-xG(t)≤G(x)-G(t)等價(jià)于
G(x)
x-1
G(t)
t-1

f(x)
g(x)
f(t)
g(t)

設(shè)h(x)=
f(x)
g(x)
,則問(wèn)題等價(jià)于h(x)≤h(t)在(1,t]上恒成立,h(t)為h(x)的最大值
h(x)=
f(x)
g(x)
=
2lnx
x2
,
h′(x)=
2(1-2lnx)
x3
(x>0)

∴h(x)在區(qū)間(
e
,+∞
)上單調(diào)遞減,在區(qū)間(1,
e
)上單調(diào)遞增
t≤
e

∴實(shí)數(shù)t的最大值為
e
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2
(I)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值,并討論f(x)的單調(diào)性;
(II)若f(x)存在極值,求a的取值范圍,并證明所有極值之和大于ln
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)設(shè)函數(shù)f(x)=ln(1+x)-
2x
x+2
,證明:當(dāng)x>0時(shí),f(x)>0;
(Ⅱ)從編號(hào)1到100的100張卡片中每次隨機(jī)抽取一張,然后放回,用這種方式連續(xù)抽取20次,設(shè)抽得的20個(gè)號(hào)碼互不相同的概率為P.證明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•楊浦區(qū)一模)設(shè)函數(shù)f(x)=ln(x2-x-6)的定義域?yàn)榧螦,集合B={x|
5x+1
>1}.請(qǐng)你寫出一個(gè)一元二次不等式,使它的解集為A∩B,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2(a>
2
)
,
(1)若a=
3
2
,解關(guān)于x不等式f(e
x
-
3
2
)<ln2+
1
4
;
(2)證明:關(guān)于x的方程2x2+2ax+1=0有兩相異解,且f(m)和f(n)分別是函數(shù)f(x)的極小值和極大值(m,n為該方程兩根,且m>n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+2x2
(1)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值;
(2)在(1)的條件下,方程ln(x+a)+2x2-m=0恰好有三個(gè)零點(diǎn),求m的取值范圍;
(3)當(dāng)0<a<1時(shí),解不等式f(2x-1)<lna.

查看答案和解析>>

同步練習(xí)冊(cè)答案