分析:先根據(jù)真數(shù)大于0求出函數(shù)的定義域,根據(jù)對數(shù)函數(shù)和二次函數(shù)的單調(diào)性分析出內(nèi)函數(shù)t=x2+4x-12和外函數(shù)y=log2t的單調(diào)性,最后根據(jù)“同增異減”的原則求出復(fù)合函數(shù)的單調(diào)性.
解答:解:函數(shù)y=log2(x2+4x-12)的定義域為(-∞,-6)∪(2,+∞)
令t=x2+4x-12,則y=log2t
∵y=log2t在定義域上為增函數(shù),
t=x2+4x-12在(-∞,-6)上為減函數(shù),在(2,+∞)上為增函數(shù),
故函數(shù)y=log2(x2-3x-4)的單調(diào)增區(qū)間是(2,+∞)
故答案為:(2,+∞)
點評:本題考查的知識點是復(fù)合函數(shù)的單調(diào)性,熟練掌握各種基本初等函數(shù)的單調(diào)性及復(fù)合函數(shù)單調(diào)性“同增異減”的原則是解答的關(guān)鍵.