(1)解:∵S
n+a
n=-n①
∴n≥2時,S
n-1+a
n-1=-n+1②
①-②可得2a
n=a
n-1-1
∴2(a
n+1)=a
n-1+1
又a
1=-
,∴{a
n+1}是以
為首項(xiàng),
為公比的等比數(shù)列
∴a
n+1=
,∴a
n=
-1;
(2)解:b
n=ln(a
n+1)=nln
,∴a
nb
n=[
-1]•nln
,
∴{a
nb
n}的前n項(xiàng)和為ln
[
+2•
+…+n•
]-
•ln
令T
n=ln
[
+2•
+…+n•
],則
T
n=ln
[
+2•
+…+(n-1)•
+n•
],
兩式相減,可得T
n=ln
(2-
-
)
∴{a
nb
n}的前n項(xiàng)和為ln
(2-
-
)-
•ln
;
(3)證明:由(1)知,
=-2(
-
)
∴
=-2(
+
+…+
-
)
=-2(
)<2
∴
.
分析:(1)再寫一式,兩式相減,可得{a
n+1}是以
為首項(xiàng),
為公比的等比數(shù)列,從而可得數(shù)列{a
n}的通項(xiàng)公式;
(2)確定數(shù)列的通項(xiàng),利用錯位相減法求和;
(3)確定通項(xiàng),利用裂項(xiàng)法求和,即可證得結(jié)論.
點(diǎn)評:本題考查數(shù)列的通項(xiàng)與求和,考查不等式的證明,正確運(yùn)用數(shù)列的求和方法是關(guān)鍵.