17.在經濟學中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).某公司每月最多生產100臺報警系統(tǒng)裝置,生產x(x∈N*)臺的收入函數(shù)為R(x)=3000x+ax2(單位:元),其成本函數(shù)為C(x)=kx+4000(單位:元),利潤是收入與成本之差.當生產10臺時,成本為9000元,利潤為19000元.
(1)求利潤函數(shù)P(x)及邊際利潤函數(shù)MP(x);
(2)利潤函數(shù)P(x)與邊際利潤函數(shù)MP(x)是否具有相同的最大值?

分析 (1)k=500,a=-20,利用利潤等于收入與成本之差代入可得利潤函數(shù)P(x)的表達式,進而利用邊際函數(shù)的定義可得邊際利潤函數(shù)MP(x)的表達式;
(2)通過(1)分別計算出各自的最大值,進而比較即得結論.

解答 解:(1)k=500,a=-20,P(x)=R(x)-C(x)=(3 000x-20x2)-(500x+4 000)
=-20x2+2 500x-4 000(x∈[1,100]且x∈N)
MP(x)=P(x+1)-P(x)=-20(x+1)2+2 500(x+1)-4 000-(-20x2+2 500x-4 000)
=2 480-40x (x∈[1,100]且x∈N).
(2)P(x)=-20(x-$\frac{125}{2})$2+74 125,當x=62或63時,P(x)max=74 120(元).
因為MP(x)=2 480-40x是減函數(shù),所以當x=1時,MP(x)max=2 440(元).
因此,利潤函數(shù)P(x)與邊際利潤函數(shù)MP(x)不具有相同的最大值.

點評 本題考查函數(shù)模型的選擇與應用,考查分析問題、解決問題的能力,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.從N個編號中要抽取n個號碼入樣,若采用系統(tǒng)抽樣方法抽取,則分段間隔應為([$\frac{N}{n}$]表示$\frac{N}{n}$的整數(shù)部分)( 。
A.$\frac{N}{n}$B.nC.[$\frac{N}{n}$]D.[$\frac{N}{n}$]+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設函數(shù)$f(x)=|x+\frac{1}{a}|+|x-a|(a>0)$.
(1)求證:f(x)≥2;
(2)若f(2)<4,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設等比數(shù)列{an}中,每項均是正數(shù),且a5a6=81,則log${\;}_{\frac{1}{3}}$a1+log${\;}_{\frac{1}{3}}$a2+log${\;}_{\frac{1}{3}}$a3+…+log${\;}_{\frac{1}{3}}$a10=(  )
A.20B.-20C.-4D.-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{2}$x2-mlnx.
(1)求函數(shù)f(x)的極值;
(2)若m≥1,試討論關于x的方程f(x)=x2-(m+1)x的解的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)y=$\frac{{x}^{2}}{{e}^{x}}$的單調遞增區(qū)間為[0,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知角α的頂點與直角坐標系的原點重合,始邊與x軸的非負半軸重合,終邊在直線x+3y=0上,則cos2α的值為( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設Sn為數(shù)列{an}的前n項和,且S3=7,a1+3,a3+4的等差中項為3a2
(1)求a2;
(2)若{an}是等比數(shù)列,求an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在△ABC中,向量$\overrightarrow{a}$=(1,cosB),$\overrightarrow$=(sinB,1),且$\overrightarrow{a}$⊥$\overrightarrow$,則角B的大小為$\frac{3π}{4}$.

查看答案和解析>>

同步練習冊答案