(理) 空間三點A(0,1,0),B(2,2,0),C(-1,3,1),則


  1. A.
    數(shù)學(xué)公式數(shù)學(xué)公式是共線向量
  2. B.
    數(shù)學(xué)公式的單位向量是(1,1,0)
  3. C.
    數(shù)學(xué)公式數(shù)學(xué)公式夾角的余弦值數(shù)學(xué)公式
  4. D.
    平面ABC的一個法向量是(1,-2,5)
D
分析:A:根據(jù)題意兩個向量的坐標(biāo)表示,可得分別寫出,所以不共線.
B:結(jié)合題意可得:的單位向量為:
C:根據(jù)題意分別寫出兩個向量的坐標(biāo)表示,再結(jié)合向量的數(shù)量積公式求出兩個向量夾角的余弦值.
D:設(shè)平面ABC的一個法向量是,利用,可得x:y:z=1:(-2):5.
解答:A:=(2,1,0),=(-1,2,1),所以,所以不共線,所以A錯誤.
B:因為=(2,1,0),所以的單位向量為:,所以B錯誤.
C:=(2,1,0),,所以cos==-,所以C錯誤.
D:設(shè)平面ABC的一個法向量是,因為=(2,1,0),=(-1,2,1),所以,即,所以x:y:z=1:(-2):5,所以D正確.
故選D.
點評:本題主要考查向量之間的運算,即向量坐標(biāo)形式的數(shù)量積運算、向量坐標(biāo)形式的共線與利用向量的數(shù)量積運算求平面的法向量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文做理不做)正方體ABCD-A1B1C1D1中,p、q、r分別是AB、AD、B1C1的中點.那么正方體的過P、Q、R的截面圖形是
正六邊形
正六邊形

(理做文不做)已知空間三個點A(-2,0,2)、B(-1,1,2)和C(-3,0,4),設(shè)
a
=
AB
b
=
AC
.當(dāng)實數(shù)k為
k=-
5
2
或k=2
k=-
5
2
或k=2
時k
a
+
b
與k
a
-2
b
互相垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理) 空間三點A(0,1,0),B(2,2,0),C(-1,3,1),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(理) 空間三點A(0,1,0),B(2,2,0),C(-1,3,1),則( 。
A.
AB
AC
是共線向量
B.
AB
的單位向量是(1,1,0)
C.
AB
BC
夾角的余弦值
55
11
D.平面ABC的一個法向量是(1,-2,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年濱州市質(zhì)檢三理) 在空間中,有如下命題:

    ①互相平行的兩條直線在同一個平面內(nèi)的射影必然是互相平行的兩條直線;

    ②若平面;

    ③若平面;

    ④若平面內(nèi)的三點A、B、C到平面的距離相等,則.

    其中正確命題的個數(shù)為(    )個。                                    (    )

    A.0              B.1              C.2              D.3

查看答案和解析>>

同步練習(xí)冊答案