已知拋物線C的方程為x2=2py(p>0),焦點(diǎn)F為(0,1),點(diǎn)P(x1,y1)是拋物線上的任意一點(diǎn),過點(diǎn)P作拋物線的切線交拋物線的準(zhǔn)線l于點(diǎn)A(s,t).
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)若x1∈[1,4],求s的取值范圍.
(3)過點(diǎn)A作拋物線C的另一條切線AQ,其中Q(x2,y2)為切點(diǎn),試問直線PQ是否恒過定點(diǎn),若是,求出定點(diǎn);若不是,請說明理由.
(本題滿分15分)
(1)由拋物線的焦點(diǎn)F(0,1)可得p=2
故所求的拋物線的方程為x2=4y…(3分)
(2)由導(dǎo)數(shù)的幾何意義可得過P的切線斜率k=y′|x=x1=
1
2
x1

∴切線方程為y-y1=
1
2
x1(x-x1)

∵準(zhǔn)線方程為y=-1.
在切線方程中,令y=-1…(5分)
可得s=
x1
2
-
2
x1
.…(7分)
又s在[1,4]單調(diào)遞增
∴s的取值范圍是-
3
2
≤s≤
3
2
.…(10分)
(3)猜測直線PQ恒過點(diǎn)F(0,1)…(11分)
由題得P(x1,
x21
4
),Q(x2,
x22
4
)
,x1≠x2
要證點(diǎn)P、F、Q三點(diǎn)共線,只需證kPF=kQF,即證x1x2=-4…(13分)
由(2)知s=
x1
2
-
2
x1
,同理得s=
x2
2
-
2
x2
,故
x1
2
-
2
x1
=
x2
2
-
2
x2

x1-x2
2
=
2
x1
-
2
x2
=
2(x2-x1)
x1x2

∵x1≠x2
∴x1x2=-4
∵KPF=
x12-1
4
x1
=
x12-1
4x1
,KQF=
x22-1
4x2
=
(-
1
x1
)
2
-1
4(-
1
x1
)
=
1-x12
-4x1
=
x12-1
4x1
=KPF
從而可知點(diǎn)P、F、Q三點(diǎn)共線,即直線PQ恒過點(diǎn)F(0,1)…(15分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),且橢圓C的離心率e=
1
2
,F(xiàn)1也是拋物線C1:y2=-4x的焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)F2的直線l交橢圓C于D,E兩點(diǎn),且2
DF2
=
F2E
,點(diǎn)E關(guān)于x軸的對稱點(diǎn)為G,求直線GD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓
x2
4
+
y2
2
=1
,過程P(1,1)作直線l,與橢圓交于A,B兩點(diǎn),且點(diǎn)P是線段AB的中點(diǎn),則直線l的斜率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率e=
1
2
,一個頂點(diǎn)的坐標(biāo)為(0,
3
)

(1)求橢圓C的方程;
(2)橢圓C的左焦點(diǎn)為F,右頂點(diǎn)為A,直線l:y=kx+m與橢圓C相交于M,N兩點(diǎn)且
AM
AN
=0
,試問:是否存在實(shí)數(shù)λ,使得S△FMN=λS△AMN成立,若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)M(
3
,0),橢圓
x2
4
+y2=1與直線y=k(x+
3
)交于點(diǎn)A、B,則△ABM的周長為( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1
x2
4
+y2=1,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上,
OB
=2
OA
,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直線y=x-2上是否存在點(diǎn)P,使得經(jīng)過點(diǎn)P能作出拋物線y=
1
2
x2
的兩條互相垂直的切線?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>c>0,a2=b2+c2)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點(diǎn)P作此圓的切線,切點(diǎn)為T,且|PT|的最小值不小于
3
2
(a-c)

(1)求橢圓的離心率e的取值范圍;
(2)設(shè)橢圓的短半軸長為1,圓F2與x軸的右交點(diǎn)為Q,過點(diǎn)Q作斜率為k(k>0)的直線l與橢圓相交于A,B兩點(diǎn),若OA⊥OB,求直線l被圓F2截得的弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,過右焦點(diǎn)F且與x軸垂直的直線交橢圓于A,B兩點(diǎn),且|AB|=
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=kx+t(t≠0)與橢圓C相交于M,N兩點(diǎn),直線AO平分線段MN,求△OMN的面積的最大值及此時直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案