、已知函數(shù)f(x)=-x3+3x2+9xa,

(I)求f(x)的單調(diào)遞減區(qū)間;

(II)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.

解題分析:三次函數(shù)是高考導(dǎo)數(shù)部分依托的主要函數(shù),本題主要考查導(dǎo)數(shù)法求函數(shù)的單調(diào)區(qū)間和函數(shù)的最值問題,屬于常規(guī)問題。   

解:(I) f ’(x)=-3x2+6x+9.令f ‘(x)<0,解得x<-1或x>3,

     所以函數(shù)f(x)的單調(diào)遞減區(qū)間為(-∞,-1),(3,+∞).

    (II)因?yàn)?i>f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a

     所以f(2)>f(-2).因?yàn)樵冢ǎ?,3)上f ‘(x)>0,所以f(x)在[-1, 2]上單調(diào)遞增,又由于f(x)在[-2,-1]上單調(diào)遞減,因此f(2)和f(-1)分別是f(x)在區(qū)間[-2,2]上的最大值和最小值,于是有 22+a=20,解得 a=-2.   

f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7,

即函數(shù)f(x)在區(qū)間[-2,2]上的最小值為-7.

解題回顧:三次函數(shù)是高考導(dǎo)數(shù)部分依托的主要函數(shù),對(duì)于三次函數(shù)性質(zhì)的研究是近年來導(dǎo)數(shù)考查的重點(diǎn)內(nèi)容。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)
,
求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、(
1
3
,1)
B、(
1
3
,
1
2
]
C、(
1
3
,
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|x-1|-a
1-x2
是奇函數(shù).則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-1x+a
+ln(x+1)
,其中實(shí)數(shù)a≠1.
(1)若a=2,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案