設(shè)e1、e2是兩個(gè)不共線的向量,已知=2e1+ke2,e1+3e2,=2e1e2,若A、B、D三點(diǎn)共線,求k的值.

答案:
解析:

  答案:解:∵A、B、D三點(diǎn)共線,∴存在實(shí)數(shù)λ,使=λ

  ∵=2e1e2e1-3e2e1-4e2,

  又∵=2e1+ke2,

  ∴2e1+ke2=λ(e1-4e2),∴,∴k=-8.

  分析:由于A、B、D三點(diǎn)共線,依向量共線定理,存在實(shí)數(shù)λ,使得=λ


提示:

要熟練掌握向量共線定理.A、B、D三點(diǎn)共線,也可得到=λ=λ


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
e1
,
e2
是兩個(gè)不共線的非零向量,
(1)如果
AB
=
e1
+
e2
,
BC
=2
e1
+8
e2
,
CD
=3(
e1
-
e2
)
,求證:A、B、D三點(diǎn)共線.
(2)欲使k
e1
+
e2
e1
+k
e2
共線,試確定實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
e1
e2
是兩個(gè)不共線的向量,且向量
a
=2
e1
-
e2
與向量
b
=
e1
+λ
e2
是共線向量,則實(shí)數(shù)λ=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)e1與e2是兩個(gè)不共線向量,
AB
=3e1+2e2
CB
=ke1+e2,
CD
=3e1-2ke2,若A、B、D三點(diǎn)共線,則k的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
e1
,
e2
是兩個(gè)不共線的向量,若向量
a
=
e1
e2
(λ∈R)
與向量
b
=-(λ
e1
-4
e2
)
共線且方向相同,則λ=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
e
1,
e
2是兩個(gè)不共線的向量,已知
AB
=2
e
1+k
e
2,
CB
=
e
1+3
e
2,
CD
=2
e
1-
e
2,若A、B、D三點(diǎn)共線,則k的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案