15.如果把一個(gè)多邊形的所有邊中的任意一條邊向兩方無限延長成為一直線時(shí),其他各邊都在此直線的同旁,那么這個(gè)多邊形就叫做凸多邊形,平面內(nèi)凸四邊形有2條對角線,凸五邊形有5條對角線,以此類推,凸16邊形的對角線條數(shù)為( 。
A.65B.96C.104D.112

分析 首先從特殊四邊形的對角線觀察起,則四邊形是2條對角線,五邊形有5=2+3條對角線,六邊形有9=2+3+4條對角線,則七邊形有9+5=14條對角線,則八邊形有14+6=20條對角線.根據(jù)對角線條數(shù)的數(shù)據(jù)變化規(guī)律進(jìn)行總結(jié)即得.

解答 解:可以通過列表歸納分析得到;

多邊形45678
對角線22+32+3+42+3+4+52+3+4+5+6
16邊形有2+3+4+…+14=$\frac{16×13}{2}$=104條對角線.
故選C.

點(diǎn)評 本題主要考查了多邊形對角線的條數(shù)的公式總結(jié),考查了簡單的合情推理.解答關(guān)鍵是能夠從特殊中找到規(guī)律進(jìn)行計(jì)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若A,B,C形成等差數(shù)列.
(1)求cosB的值;
(2)若b=$\sqrt{7}$,a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知曲線C1:y=sinx,C2:y=sin(2x+$\frac{2π}{3}$),則下面結(jié)論正確的是( 。
A.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向左平移$\frac{2π}{3}$個(gè)單位長度,得到曲線C2
B.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向左平移$\frac{π}{3}$個(gè)單位長度,得到曲線C2
C.把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移$\frac{2π}{3}$個(gè)單位長度,得到曲線C2
D.把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)$\frac{π}{3}$單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若變量x,y滿足$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,則2x-y的最大值是(  )
A.-2B.3C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知sin(30°+α)=$\frac{4}{5}$,60°<α<150°,則cosα=$\frac{4-3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給出以下數(shù)對序列:
(2,2)
(2,4)(4,2)
(2,6)(4,4)(6,2)
(2,8)(4,6)(6,4)(8,2)

記第i行的第j個(gè)數(shù)對為aij,如a43=(6,4),則aij=(2j,2i-2j+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,在△OBC中,點(diǎn)A是BC的中點(diǎn),$\overrightarrow{OD}$=2$\overrightarrow{DB}$,DC和OA交于點(diǎn)E,則AO與OE的比值為( 。
A.$\frac{6}{5}$B.$\frac{3}{2}$C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,P是兩條平行直線l1,l2之間的一個(gè)定點(diǎn),且點(diǎn)P到l1,l2的距離分別為PA=1,PB=$\sqrt{3}$,設(shè)△PMN的另兩個(gè)頂點(diǎn)M,N分別在l1,l2上運(yùn)動(dòng),設(shè)∠MPN=α,∠PMN=β,∠PNM=γ,且滿足sinβ+sinγ=sinα(cosβ+cosγ).
(Ⅰ)求α;
(Ⅱ)求$\frac{1}{PM}$+$\frac{\sqrt{3}}{PN}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若sinθ-cosθ=$\frac{1}{2}$,則sin($\frac{3π}{2}$-4θ)的值為( 。
A.$\frac{{3\sqrt{7}}}{8}$B.$-\frac{{3\sqrt{7}}}{8}$C.$\frac{1}{8}$D.$-\frac{1}{8}$

查看答案和解析>>

同步練習(xí)冊答案