在△ABC中,a,b,c分別為角A,B,C的對邊,且角A=60°,若S△ABC=
15
3
4
,且5sinB=3sinC,則△ABC的周長等于
 
考點:正弦定理
專題:解三角形
分析:由條件利用正弦定理可得5b=3c,再由S△ABC=
15
3
4
=
1
2
bc•sinA,求得bc,從而求得b和c的值.再由余弦定理求得a,從而得到三角形的周長.
解答: 解:在△ABC中,角A=60°,∵5sinB=3sinC,故由正弦定理可得 5b=3c,
再由S△ABC=
15
3
4
=
1
2
bc•sinA,可得 bc=15,∴b=3,c=5.
再由余弦定理可得 a2=b2+c2-2bc•cosA=19,a=
19

故三角形的周長a+b+c=8+
19

故答案為:8+
19
點評:本題主要考查正弦定理和余弦定理的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項和為Sn,且滿足
S6
S3
=9,則公比q=( 。
A、
1
2
B、±
1
2
C、2
D、±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+x2+b,g(x)=alnx.
(1)若f(x)的極大值為
4
27
,求實數(shù)b的值;
(2)若對任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實數(shù)a的取值范圍;
(3)若函數(shù)f(x)滿足:在定義域內(nèi)存在實數(shù)x0,使f(x0+k)=f(x0)+f(k)(k為常數(shù)),則稱“f(x)關(guān)于k可線性分解”.設(shè)b=0,若F(x)=
af(x)
x2
+g(x)關(guān)于實數(shù)a可線性分解,求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式|x+1|≤4的解集為A,記A中的最大元素為T,若正實數(shù)a,b,c滿足a2+b2+c2=T,求a+2b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB∥CD.AB=AD=
1
2
CD=2,點M在線段EC上且不與E、C重合.
(1)當(dāng)點M是EC中點時,求證:BM∥平面ADEF;
(2)當(dāng)三棱錐M-BDE的體積為
16
9
時,求平面BDM與平面ABF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對邊的長分別為a,b,c,且有
2
sin(2A+
π
4
)+sin(A+C+
π
6
)=1+2cos2A.
(Ⅰ)求A、B的值;
(Ⅱ)若a2+c2=b-ac+2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓O的直徑AB=10,P是AB延長線上一點,BP=2,割線PCD交圓O于點C,D,過點P做AP的垂線,交直線AC于點E,交直線AD于點F.
(1)求證:∠PEC=∠PDF;
(2)求PE•PF的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a1,a2,a3不全為零,正數(shù)x,y滿足x+y=2,設(shè)
xa1a2+ya2a3
a12+a22+a32
的最大值為M=f(x,y),則M的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c分別為△ABC三個內(nèi)角A、B、C的對邊,若(c-b)sinC=asinA-bsinB,則∠A=
 

查看答案和解析>>

同步練習(xí)冊答案