【理科】拋物線頂點在原點,焦點是圓x2+y2-4x=0的圓心.
(1)求拋物線的方程;
(2)直線l的斜率為2,且過拋物線的焦點,與拋物線交于A、B兩點,求弦AB的長;
(3)過點P(1,1)引拋物線的一條弦,使它被點P平分,求這條弦所在的直線方程.
考點:直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)圓的方程可化為:(x-2)2+y2=4,求出圓心坐標,可得拋物線的方程;
(2)直線l方程為y=2(x-2),代入拋物線方程,利用韋達定理及弦長公式,可求弦AB的長;
(3)當l不垂直于x軸時,設l的方程為y-1=k(x-1)(k≠0),代入拋物線方程,利用韋達定理,結合中點坐標公式,即可求這條弦所在的直線方程.
解答: 解:(1)圓的方程可化為:(x-2)2+y2=4,圓心坐標為(2,0),
∴拋物線方程為y2=8x,…(4分)
(2)直線l方程為y=2(x-2),
y2=8x
y=2(x-2)
得:x2-6x+4=0,
∴x1+x2=6,x1x2=4,
|AB|=
(1+22)(x1-x2)2
=
5[(x1+x2)2-4x1x2]
=10
,…(8分)
(3)當拋物線過點P(1,1)的弦l⊥x軸時,其方程為x=1,不能被點P平分;
當l不垂直于x軸時,設l的方程為y-1=k(x-1)(k≠0),
y-1=k(x-1)
y2=8x
得:ky2-8y+8(1-k)=0,(10分)
y1+y2=
8
k
,y1y2=
8(1-k)
k

由題意,
y1+y2
2
=1
,即
4
k
=1⇒k=4

∴所求直線方程為y-1=4(x-1),即4x-y-3=0.…(12分)
點評:本題考查圓的方程與拋物線的方程,考查直線與拋物線的位置關系,考查韋達定理的運用,考查學生的計算能力,正確運用韋達定理是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

從5名醫(yī)生(3男2女)中隨機等可能地選派兩名醫(yī)生,則恰選得一名男醫(yī)生和一名女醫(yī)生的概率為(  )
A、
1
10
B、
2
5
C、
1
2
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),經(jīng)過點(3,-2)與向量(-1,1)平行的直線l交橢圓C于A,B兩點,交x軸于M點,又
AM
=2
MB

(Ⅰ)求橢圓C長軸長的取值范圍;
(Ⅱ)若|
AB
|=
3
2
2
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,右焦點為F(1,0).
(Ⅰ)求此橢圓的方程;
(Ⅱ)若過點F且傾斜角為
π
4
的直線與此橢圓相交于A,B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
3x-1
2x+1
(2≤x≤4)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

向面積為9的△ABC內(nèi)任投一點P,求△PBC的面積小于3的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線M:y2=2px(p>0)的準線過橢圓N:
4x2
5
+y2=1的左焦點,以坐標原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.
(1)求拋物線M的方程;
(2)設點A的橫坐標為x1,點C的橫坐標為x2,曲線M上點D的橫坐標為x1+2,求直線CD的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖(其中[x]表示不超過x的最大整數(shù)),則輸出的S值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x2+ax+3,在(-∞,1]上是增函數(shù),則a的取值范圍是
 

查看答案和解析>>

同步練習冊答案